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1 Introduction

Owing to the increased availability of cross sectional surveys current status data
have gained popularity and are being increasingly used in a number of disci-
plines. This type of information and associated statistical tools are employed to
draw inferences about the underlying incidence of a phenomenon and to identify
the main determinants of its intensity and duration pro�le. Accurate inferences
about incidence are generally made from data collection plans that follow obser-
vations over time thus permitting to identify more or less precisely the timing of
occurrence of relevant events. However, implementation of longitudinal designs
involves complex and expensive enterprises and are usually replaced by single
wave cross-sectional surveys. Thus, the study of phenomena such as onset of ill-
nesses, recovery from treatment, menopause, �rst intercourse, weaning, leaving
home, �rst marriage and the like usually rely on information collected retro-
spectively in cross sectional surveys. Because retrospective recall of events and
their timing is oftentimes inaccurate and unreliable, inferences about incidence
stand on shaky ground and their worth as falsifying information is discounted.
An alternative to retrospective recall of the timing of event is to use current
status data, that is, information about the occurrence or non occurrence of a
relevant event prior to a time marker such as a survey de�ned ex-ante. At an
individual level the information is elicited from answers to questions that probe
the experience of an event prior to the time marker. Such information is ag-
gregated as prevalence data or the fraction of the population that experienced
the event at the time of interview. Thus, for example, the proportion of moth-
ers who at the time of the survey are still breastfeeding the most recently born
child is used to make inferences about the timing of weaning (Grummer-Strawn,
1993). Similarly, the proportion of females at age x who are still single is used
to identify characteristics of the timing of marriage (Hajnal, 1953). In the same
vein, the occurrence or non occurrence of diabetes to an individual aged x at
the time of the survey is material that, when properly handled, can yield useful
insights about the proccesses that drive the incidence of diabetes.
However, inferences from current status data have an important drawback:

they are not always robust to competing events that occur prior to the sur-
vey to some individuals who, as a consequence of them, are unable to provide
information about their current status. For example, information about breast-
feeding is not elicited from mothers whose most recently born child died before
the survey. Individuals who migrate away from a household cannot provide in-
formation about their marital status. And members of a cohort who contract
diabetes but die before the survey as a result of complicating factors, cannot
provide information about their status. In such cases the validity of inferences
about underlying incidence will depend strongly on whether or not the compet-
ing event occurs di¤erentially among those who experience and those who do
not experience the event of interest.
This paper discusses inconsistencies induced by the presence of competing

events and proposes a simple way to reduce or eliminate them altogether. Al-
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though these inconsistencies have been identi�ed in the literature and are well-
known among specialized researchers in the topic, they are conventionally dis-
missed as trivial or altogether ignored in empirical applications. What is new
in this paper is the identi�cation of conditions that lead to incosistency and
the formalization of a simple correction procedure. The paper is organized as
follows: Section 2 reviews the linkages between current status information and
the underlying incidence function in a non formal, heuristic manner. In Section
3 we introduce population heterogeneity, indentify problems for inferences when
there are non-ignorable competing events, and propose an adjustment procedure
using maximum likelihood. Section 4 evaluates these procedures using Monte
Carlo simulations. Section 5 summarizes results and concludes.

2 The algebra of current status

In this section we a provide informal description of current status data and
associated statistics. It is not our intention to deliver a thorough review of
these procedures. Kieding (1991) produced a very thorough survey of statistical
perspectives undergirding current status methods. Diamond and MacDonald
(1991) reviewed binary models for current status data, their relation to sur-
vival models and their demographic and epidemiological applications. Jewell
and van der Laan (2002) o¤er an updated review of methods, extensions and
applications. To �x ideas suppose we are interested in the occurrence of an event

E. Individuals in a population are characterized by a waiting (latent) time or
duration di; de�ned as the elapsed time between the calendar time of onset of
exposure toi and the calendar time of the occurrence of E, tei, as well as by a
probability P (E) that E will ever be experienced. We assume individuals are
observed at an exact date, ts, the date of a survey. The survey provides enough
information to de�ne an indicator variable �i = Ii(toi < tei < ts) = 1 if event
takes place before survey and 0 otherwise. Ocassionally, but not always, the
survey contain retrospective questions to elicit the timing of the event, tei. In
general, however, this information is not collected or it is unrelaiable. If the
event took place, that is, if tei < ts we have left censored data; if the event has
not occurred, that is, if tei > ts , we end up with right censored data. If the
individual provides information on the date of the event, that is if tei is known
(albeit with some error), we obtain partially left censored data.
As is frequently the case in demographic and epidemiological surveys, the

age of individuals is the central measure of passage of time and generally we
can translate the above time and duration indicators into an age metric. Let
xtoi be the age of individual i at the time of onset of exposure,toi , xsi the
age at the time of the survey, and xei the age at the time of event (if this took
place) so that duration is di = xsi� xei. In those ocassions when di is known it
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is subject to considerble noise and in what follows we will proceed as if it were
unknown.
The foregoing information can be aggregated by age and by population sub-

groups. Assume that we have information on exact ages at the time of the survey,
on the occurrence/non-occurrence of the event and on the presence/absence of
a trait, Z, which the investigator believes exerts in�uence on the occurrence
and timing of event E. The observable aggregated quantities will be denoted
as N(x; ts; Z = 1) and N(x; ts; Z = 1), the number of individuals with trait
Z and aged x at the time of the survey who have and have not experienced E
respectively. Analogous expressions apply for the number of individuals who do
not possess the trait, namely, N(x; ts; Z = 0) and N(x; ts; Z = 0). Whether
or not we can observe all individuals who experienced E is wholly dependent
on the process being studied. In most cases there is a set of competing censor-
ing events fEc; c = 1:::kg each characterized by a duration dcj for individual j
such that whenever dcj < (tsj � tei) we will have no information whatsoever
on these individuals1 . For example, in a cross-sectional survey of older people
the researcher may have information on diabetes status for all pertinent ages
x and no information at all on individuals who died whether or not they con-
tracted diabetes before the survey. These processes are represented in Figure 1
as transitions between states, one characterized by the absence of event E an-
other characterized by its presence, and a third representing events leading to
unobserved individuald at time ts. The notation in this �gure makes explicit an
important assumption we use throughout the paper, namely, that there are no
cohort changes or, equivalently, that all processes leading to events of interest
are stationary and do not depende on calendar time.
Let �(y; Z = 1) be the instantaneous risk at age y of event E for individuals

with trait Z, �(y; Z = 1) the sum of instantaneous risks of competing censoring
events among those with trait Z who experience E and, �nally, �(y; Z = 1) the
instantaneous risk at age y of competing censoring events among those with
trait Z who do not experience E. The investigator�s interest is on the function
�(y) variously referred to as the "incidence" function, the "risk" function and
the "hazard" function of event E:To simplify exposition we will assume that
there is only one censoring competing event, mortality, and that the associated
risk among those who experienced E is dependent on age but not on duration
since the occurrence of E. All results we discuss in this paper di¤er only slightly
if one assumes that �(x; z) is also duration dependent.
The process represented in Figure 1 has been well-studied by Keiding (1991)

and by authors interested in statistical inference from current status data (Di-
amond and McDonald, 1991; Keiding et al, 1995; Sun and Kalb�eish, 1993;
Keiding et al., 1989; Kieding et al., 1996). But detailed attention to the prob-
lem generated by the existence of censoring competing risks has only recently
been formally investigated (Jewel and Van der Laan, 2002). This paper rests on
some of these new developments and proposes a tractable solution for empirical

1A competing censoring event Ec censors observations that may or may not have experi-
enced event E in the sense that the calendar time of their occurrence to individual i, tci, is
less than ts:The individual is thus not observed at the time of the survey
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estimation. In what follows we introduce the basic algebra of current status data
and derive expressions in the case of homogeneous and non homogeneus risks.
We �rst deal with the case when the population is assumed to be homogeneous
and then when there is heterogenity with respect to a binary trait Z believed
to have e¤ects on the incidence of event E:

2.1 Case 1: Homogeneity of risks

Assume that there are no mortality di¤erentials between those who experience E
and those who do not, e.g �(v) = �(v), that is, mortality risks for each subgroup
are identical to some baseline mortality valid for the entire population. Assume
also that onset of exposure is age 0 (birth). The probability of reaching age x
at time ts without experiencing event E is

 (x)= exp(�
R x
0
(�(v) + �(v))dv) = �(x) � �(x)

where �(x) = exp(�
R x
0
�(v)dv) is the single decrement cumulated probabil-

ity of surviving to age x in the absence of condition E and �(x) = exp(�
R y
0
�(v)

dv) is the single decrement cumulated probability of avoiding event E in the ab-
sence of general mortality. If, as it happens with many conditions with adult

onset, the process starts at arbitray age say xo > 0, the above expressions hold
with an origin shift.
Inferences about the process(es) leading to the occurrence of E focus on

the density function �(v) or any of the quantities de�ned by it, particulary the
integrated hazard, namely, (�

R y
0
�(v) dv): The observed data can be used to

make inferences about �(v) and the set of parameters on which it depends. Our
purpose is to show that such inferences can only be made under quite restrictive
assumption regarding competing censoring events.
If the number of entrances at origin (ts � x) years before is the stream

N(0; ts � x), the expected number of individuals aged x who have not experi-
enced E is given by

N(x; ts) = N(0; ts � x) *  (x)

The probability of surviving to age x at time t for those who experience the
E is

(x)=

R x
0
exp(�

R y
0
(�(v) + �(v))dv) � �(y) � exp(�

R x
y
�(v)dv)dy

or


(x) = exp(�
R x
0
�(v)dv) �

R x
0
�(y) � (exp�

R y
0
�(v)dv)dy = �(x) � (1��(x))

The expected number of surviving individuals aged x and who experience E
before ts, (tei < tsi); is
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N(x; ts) = N(0; ts � x) * �(x) � (1� �(x))

the neat factorization being possible only because �(x) = �(x):In this case
the observed proportion of individuals who experienced E by age x,e.g. the
prevalence of E at age x, is an empirical estimate of the probability of experi-
encing event E before age x (see also Kieding, 1991):

p(x; t) = N(x;t)

N(x;t)+N(x;t)
= �(x)�(1��(x))

�(x)�(1��(x))+�(x)�(x) = (1� �(x))

and, conversely, the observed proportion who have not experienced E, p(x; t);
is an estimate of �(x), the single decrement probability of not experiencing E.
Thus, under risk homogeneity, the observed prevalence rates at ages x (current
status observable) provide su¢ cient information to generate Nelson-Aalen type
estimates of the integrated hazard of event E and, under minimal regularity
conditions, estimates of the risk or intensity of event E, the target quantity
(Kieding, 1991).

2.2 Case II: Heterogenity of risks

Suppose that �(x) 6= �(x). �(x) is now a baseline mortality risk for the general
population. The expression for the function 
(x; t) becomes


(x) =
R x
0
exp(�

R y
0
(�(v) + �(v))dv) � �(y) � exp(�

R x
y
�(v)dv) dy

Further simpli�cation can be achieved if, without loss of generality, we
assume that �(x) and �(x) are linked through a function g(�), e.g., �(x) =
�(x)g(�) where � is an arbitrary parameter determining the di¤erence in mor-
tality risks. The expression for 
(x) becomes


(x) = exp (�
R x
0
�(v)dv) � f

R x
0
�(y)� exp (�

R y
0
�(v)dv) *

� exp(�
R x
y
(�(v)(g(�)� 1))dv dyg

or


(x) = �(x) � f
R x
0
'(y)� exp (�g(�)

R x
y
�(v)dv)dyg

where '(y) is the density of the waiting times to experience event E at age
y. To gain more transparency we use the mean value theorem and re-express

(x) as :


(x) = �(x) � (1� �(x)) � �(x; eyx)
where �(x; eyx) = exp(�g(�)

R xeyx �(v)dv) and 0 < eyx < x, eyx is an implicit
function of '(y), �; and �(v). Thus the observed proportion who experience
event E by age x is
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p(x; ts) =
N(x;t)

N(x;t)+N(x;t)
= (1��(x))�(x;eyx)

(1��(x))��(x;eyx)+�(x) � (1� �(x))
whereas the observed proportion who survived without experiencing E is

p(x; ts) =
N(x;t)

N(x;t)+N(x;t)
= �(x)

(1��(x))��(x;eyx)+�(x) � �(x)
When g(�) = 0 and �(x; eyx) = 1 we are back to a situation of risk homo-

geneity. When g(�) 6= 0, that is, when individuals who experience E are exposed
to di¤erent mortality risks than the general population, the value of �(x; eyx) can
be smaller or larger than 1 and, as a consequence, the observed proportions who
experience event E do not provide enough information to retrieve estimates of
the hazard or integrated hazard associated with the event. If E is a disease,
such as diabetes, it is likely that g(�) > 1 and observed prevalence will underes-
timate the quantity of interest, (1��(x)): Under other circumstances, g(�) < 1
and the observed prevalence will overestimate the probability of experiencig the
event before age x. For large samples and when j�(x; eyx)j is close to 1 the
bias in p(x; ts) is approximately equal to (1� �(x; eyx))(�(x) � (1� �(x))):This
expression attains a maximum at age xmax when �(xmax) = :5: Since �(x; eyx)
decrease with age, the error in the observed prevalence rates will increase at
least up to xmax. If �(1) < .50 the observer will be fooled into believing that
those who are older are less likely to experience diabetes than those who are
younger : Take as illustration the case of diabetes: mortality among diabetics is
likely to be higher than among those without it, e.g., g(�) > 1. Figure 2 displays
the magnitude of relative bias in four di¤erent scenarios resembling what one
would get in such cases2 . The curves in Figure 2 represent the proportionate
errors in the estimate of �(x). Since the errors increase with age, the observed
age pattern of prevalences contains a downward bias that worsens with age and
the observer will interpret the �gures as suggesting that the incidence of the
phenomena has been less intense for the older cohorts.

3 Population heterogeneity

Our next step is to relax the assumption of population homogeneity, assume
that we observe individuals with and without trait Z and that we wish to make

2The values of ey were set to be 45, 50, 55 at ages 60,65 and 70 and 60 at ages above
70. Two sets of values of �1 and �2 were used. They correspond to the conditional survival
curves from age 55 onward (in intervals of 5 years) in the Coale-Demeny system of life tables
(Model West, females) with life expectancies equal to 78 and 80 respectively. �1 atains a
maximum value of .581 ate age 100 and �2 attains a maximum of .756. Thus the incidence
regime is more punitive in the �rst set of values, �1.Finally, we used two alternative values
�; �1and �2; calculated from the same life tables with g(�) = 1:50 (mortality di¤erential of
50 percent). The four curves in Figure 2 display the relative errors in the estimate of �2 and
�2 and correspond to the combinations of �1 with �1 (relerror1) and �2 (relerror2), and �2
with �1 (relerror3)and �2 (relerror4) respectively.
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inferences about the e¤ect of Z on the incidence of event E. We use current
status information and proceed to compare the prevalence of the condition at
various ages in subgroups with and without Z. We know that in the case of
homogeneity of risks the observed prevalences in each subgroup is su¢ cient to
obtain unbiased estimators of the true single decrement survival probabilities
of experiencing E . It therefore must be the case that a contrast of prevalence
rates across subgroups yields an unbiased estimator of the e¤ect of trait Z on
the risk of of contracting the condition. This will not be the case under a regime
of risk heterogeneity in one or both subgroups.

3.1 Estimates of e¤ects of covariates: informal approach
and approximations

Suppose the e¤ects of trait Z on the risk of experiencing event E can be repre-
sented by a proportional hazard model, �(x;Z = 1) = exp(�) � �(x;Z = 0): In
this case the values of the single decrement probabilities of not experiencing E
in the two subgroup should be related as

�(x;Z = 1) = �(x; Z = 0)exp (�)

so that the log-log transforms of the single decrement probabilities of not
experiencing E are related linearly to each other with an o¤set equal to exp(�):If
the assumption of risk homogeneity is accurate an estimate of exp(�) can be
retrieved from prevalence data. In fact the ratio of prevalence rates in the two
subgroups at age x is given by:

OT (x) =p(x;Z = 1)=p(x; Z = 0) = �(x;Z = 1)=�(x; Z = 0) =

= �(x;Z = 0)
exp(�)�1

whereas under risk heterogenity the ratios of observed proportions are more
complex functions of exp(�) and of the quantities �(x;Z = 1) and �(x;Z = 0):

Oo(x) =p(x;Z = 1)=p(x;Z = 0) = �(x; Z = 0)
exp(�)�1�

��(x;Z=0)+(1��(x;Z=0)��(x;Z=0)�(x;Z=1)+(1��(x;Z=1)��(x;Z=1)

The exact magnitude of the bias in a hazard model-based estimate depends
on the relative magnitudes of �0s and �0s:To provide an idea of the size of the
error Figure 3 displays age-speci�c estimates of � (from observed prevalence by
age) and for four combinations of �(x;Z = 1); �(x; Z = 1) and a �xed value
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of � = :5. Note that the estimates can contain substantial (negative) errors so
much so that in some cases is even improperly signed3 .

In summary, inferences about the underlying incidence of an event and of the
size of e¤ects will contain sizeable biases when there is population heterogeneity,
di¤erential attrition due to competing events among those who experience and
do not experience E and, �nally, di¤erences in the attrition processes across
subpopulations. The approximations illustrated in Figures 2 and 3 suggest that
the use of prevalence data while igoring heterogeneity of competing risks leads
to understimation of cumulated incidence. In general the bias will get worse as
duration from the time of initiation of the event increases. A possible illustration
of this bias occurs when examining prevalence rates of of diabetes by age: in
many cases the rates tend to bend downwards with age, as Figure 2 suggest
they would. This does not necessarily mean that incidence among older people
is lower than among the younger ones. Similarly, data of prevalence of diabetes
by levels of education shows a notorious regularity: in many cases the curve for
the least educated converges and sometimes crosses over the curve representing
the prevalence rates of those with higher levels of education. As shown by Figure
3 this could simply be a result of heterogeneity of mortality between diabetics
and non diabetics.

3.2 A likelihood approach to adjustments

The likelihood of a sample of current status observations when there is no mor-
tality di¤erentials among those who do and do not experience the event is

L =
NQ
i=1

f exp (�Im(xi)(1� exp (�I
E
(xi)))g

Yif exp (�(Im(xi) + I
E
(xi)))g

(1�Yi)=

NQ
i=1

exp (�Im(xi)) � f(1� exp (�I
E
(xi)))g

Yif exp (�(IE(xi)))g
(1�Yi)

where Im(xi) and IE(xi)) are, respectively, the integrated hazards from 0
to xi for mortality and event E and Yi =1 if an individual i observed at time ts
experiences the event and 0 if the individuals is observed but did not experience
the event. Since L is an unconditional likelihood we should standardize by the
probability of surviving up to ts and upon doing this the term exp(�Im(xi))
drops out of the expression. Again the neat factorization of the likelihood is
possible because the baseline mortality function carries no information about
the incidence of E or baseline mortality is ignorable with respect to E 4 .

3The values of � and � and the four combinations created with them are the same as for
Figure 2 (see previous footnote)

4The likelihood advocated by Diamond and MacDonald is one where mortality (or any
other type of competing attrition) is treated as ignorable
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When there is di¤erential mortality between those who experience and those
who do not experience E the likelihood is given by:

L =
NQ
i=1

exp (�Im(xi)f exp (�I
E
(xi))g

(1�Yi)

f(1� exp (�IE(xi)))g
Yif

R xi
0
fexi(y) exp (�g(�)I

m
(y; xi))dyg

Yi

where fe(y) is the conditional density of (dijdi <xi) de�ned by
(�(y)dy=

R xi
o
�(y)dy) and Im(y; xi) is the integrated hazard from age y to

xi: Assuming ignorability of the baseline mortality risks, the likelihood can be
written as

L _
NQ
i=1

f exp (�IE(xi))g
(1�Yi)f(1� exp (�IE(xi)))g

Yi

f
R xi
0
fexi(y) exp (�g(�)I

m
(y; xi))dyg

Yi

The inner integral in the likelihood is the (conditional) expected value of the
function exp(�g(�)Im(y; xi)) which, using the delta method, can be approxi-
mated as:R xi

0
fexi(y) exp(�g(�)I

m(y; xi))dy �=exp(�Ex(g(�)Im(y; xi))) �=

exp(�g(�)Im(Ex(y; xi))) = exp((�g(�)Im((eyxi ; xi))) = '(�; eyxi)
where Ex stands for expectancy and all expectations are with respect to the

density fexi(y) and the quantity eyxi is the mean age at which Ex is experienced
conditional on experiencing it before age xi:The likelihood is now

L_
NQ
i=1

fexp(�IE(xi))g(1�Yi)f(1� exp(�IE(xi)))gYif'(�; eyxi)gYi =
NQ
i=1

f(1� pxi)g(1�Yi)fpxigYif'(�; eyxi)gYi
In conventional current status models the researcher can specify the nature

of �(y) (and therefore of pxi);make it dependent on a vector of parameters 
and then use standard likelihood procedures to obtain estimates of : However,
in the presence of heterogeneous risks the strategy is no longer feasible. A
further simpli�cation is possible if we condition on survival to ts and work on
the conditional likelihood

L _
NQ
i=1

f(1� pxi)=((1� pxi) + pxi'(�; eyxi))g(1�Yi)
10



fpxi'(�; eyxi)=((1� pxi) + pxi'(�; eyxi))gYi
This expression can be generalized to the case of heterogeneous populations:

there will be covariates contained in a vector Z with e¤ects on one or more of
the parameters  determining the incidence of the event. A transparent way of
making L tractable is to assume that the log of the waiting times are logistic
so that the odds can be expressed as an exponential of a linear combination of
parameters

pxi=(1� pxi) = exp(�Z)

where Z is a vector of covariates and � a vector of e¤ects. Replacing this in
the conditional likelihood we get after simpli�cation

L _
NQ
i=1

f1=(1 + exp(�Zi + '(�; eyxi)))g(1�Yi)
fexp(�Zi + '(�; eyxi)=(1 + exp(�Zi + '(�; eyxi)))gYi
that is, the likelihood of a conventional logistic model with the set of covari-

ates expanded to include '(�; eyxi ; xi):
3.3 What should '(�; eyxi) be?
Leaving aside for the moment possible departures from the assumption of log
logistic waiting times, it is of relevance to examine the nature of the quantity
'(�; eyxi): It stands for the expectd value of the probability of surviving from
the age at which E occurs up to age xi and we are replacing it for the proba-
bility of surviving from the expected age at which E occurs to age xi. It is the
predicted probability of being �eligible�for the survey after event E occurs and
is explicitly de�ned for those who experience the event and implicitly for those
who did not. The value of eyxi for individual i can be calculated exactly only
if we know what we are trying to estimate, namely, the incidence curve and its
individuals determinants.However, it can be approximated from retrospective
(possibly erroneous) information about the occurrence of E or from known in-
cidence curves of E in the population under study or similar populations. In all
these cases we can use a known mortality function for the total population as
an approximation for �(y):
Assume that '(�; eyxi) = exp(��Im(eyxi ; xi)); e:g the mortality risk of those

who experience E is (1+�) times as high as the mortality of those who do not. In
this case introducing ln('(�; eyxi)) = ��Im(eyxi ; xi) as a regressor in the logistic
model leads to an estimate of �. If the di¤erentials in mortality apply to both
subgroups created by Z; we can introduce two terms of the form ln('(�; eyxi));
one for each subgroup and associated with the scaling factors �1 and �2:Separate
identi�cation of these scaling factors may not always be possible and will depend
on the precision with which the ages eyxi are estimated and the degree to which
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they di¤er in the two groups for a given age x. Even if the waiting times for
E are drawn from identical distributions, the two subgroups will di¤er on the
probabilities of experiencing E over a lifetime and this di¤erence is enough to
generate discrepancies in the values of eyxi in each of the groups. In teh worst
case scenario one can always estimate the di¤erence �1� �2:The most important
point is that the term '(�; eyxi) is an e¤ective control to get unbiased estimates
of the e¤ects of Z and the parameter associated with it is ancillary and not of
central interest.
When estimated as suggested above, the function '(�; eyxi) will be invariant

by age, that is, di¤erent individuals with the same age will be assigned the
same value of the function, independently of covariates or of their status with
respect to E. If age were to be measured exactly this overlap is less serious
but in every-day cases we conventionally use months or years thus lumping
individuals in coarse age groups.In these cases there will be a set of individuals
indistinguishable with respect to age and therefore with the same value of the
function. As a result of this inaccuracy the variability necessry for this function
to operate as an adjustment factor will be obtained only as a by-product of its
variability across the set of ages spanned by the sample.
If one thinks of surviving to the time of the survey as a selection process

that enables the investigators to examine an outome, e.g. the occurrence/non
occurrence of E in the past, then '(�; eyxi) can be seen as performing the same
role as does the adjustment for selection suggested by Heckman (1979). In
clinical trials, where individuals are exposed to a treatment to assess the bene�ts
of a therapy, only a subset of the baseline sample is o¤ered the tratment as
some individuals attrite before receiving it. In these cases one could use the
same adjustment factor to correct the estimated e¤ect of the treatment on the
patients who are exposed to it.

4 Monte Carlo simulation

To assess the magnitude of the biases associated with current status estima-
tors under conditions of population and risk heterogeneity and to evaluate the
performance of the proposed adjustment, we simulate a population with two
subgroups, high and low education, where the event E is diabetes, there is dif-
ferential mortality between diabetic and non diabetic, and the lifetime risk of
diabetes di¤ers between the subgroups though the waiting times for diabetes are
from a log normal (mean = 25 years, sd = 10 years) for both subgroups. Figure
4 shows the prevalence rates by age that would be observed in the absence of
mortality. These are the prevalence rates that lead to unbiased estimates of the
risks of E. We introduce general mortality, �(x), as a Gompertz with a level
parameter (exp(-8) = 0.0003) and a shape parameter 0.10. Mortality di¤er-
entials between diabetics and nondiabetics are parameterized by changing the
level parameters.
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At the outset (age 30) there is an equal number of individuals in the two
subgroups, but as age increases the proportion in the low education subgroup
is higher re�ecting di¤erential growth rates by education. In particular, we
assume that the rates of increase are constant and equal to .005 for high ed-
ucation and .001 for low education. In each subgroup we simulate 51 cohorts
to represent populations at ages 50, 51,...,100 in a cross section. We assume
that the minimum age at onset of diabetes is 30. Individuals in each cohort are
assigned a waiting time to death, W1, between 0 and 70 according to the chosen
Gompertz baseline mortality rate (see above). We then divide each cohort into
two sets, one consisting of individuals who contract diabetes over their lifetime
(between ages 30 and 100) and the other consisting of individuals who remain
diabetes-free. These fractions are initially chosen so that the lifetime proba-
bility of developing diabetes is .20 in the high education group and .40 in the
low education group. Individuals in the diabetic pool are randomly allocated
a waiting time for the onset of diabetes, W2, using a draw from a log normal
distribution with a mean (sd) of 25 (10) years. If W2 < W1 the individual is
tagged as diabetic from age (30 + W2) onward. If W1 < W2, the individual
is tagged as alive with no diabetes for all ages between 30 and (30 + W1) and
dead for older ages. For those in the pool of diabetics we draw a waiting time
to death starting from the age of onset of diabetes (30 + W2). This draw,
W3, is from the Gompertz curve chosen to represent mortality among diabetics.
This individual will be tagged as alive with no diabetes for all ages from 30
up (30 + W2), as alive and diabetic for all ages between (30 + W2) and (30
+ W2 + W3), and as dead at higher ages. Finally, cohorts are joined so that
one of them represents the population aged 50, another the population aged 51
and so on. Measures of age-speci�c prevalence are calculated. If one simulates
the same cohorts but removing mortality risks, we obtain the underlying age-
speci�c prevalences, that is, those corresponding to the underlying incidence
function. To assess the e¤ects of education we estimate logistic regressions on
the age-speci�c prevalence rates using education as a dummy variable. The
coe¢ cient of education is a measure of the in�uence of education on the under-
lying incidence function and, in turn, corresponds to the contrast between the
fractions that ultimately develop diabetes in both subgroups. We compare the
estimates of the education coe¢ cient across simulations with and without the
risk of mortality to evaluate the magnitude of the biases and the performance of
the adjustment procedure. The estimates will vary slightly from one simulation
to the next since we are sampling from distributions of waiting times and the
presence of diabetes, so we present results for 25 runs of each simulation to show
the stochastic variability5 .
We begin by demonstrating the conditions under which di¤erentials in mor-

tality associated with diabetes result in biased estimates of the e¤ect of educa-
tion, as measured by the coe¢ cient for the education (dummy) variable in what
will be referred to as the naive model. Figure 5 shows the coe¢ cient estimates,
across 25 runs of each simulation, with each panel corresponding to di¤erent

5 In all cases the logistic regressions include a control for age.
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sizes of the mortality di¤erentials associated with diabetes, and in each case
baseline mortality is the same for the low and high education groups. In the
scenario shown in panel (a) the mortality di¤erential for the low education group
(bottom axis) is equal to the mortality di¤erential in the high education group
(top axis). One can show algebraically that although this is not a situation of
risk homogeneity, the estimate of e¤ects will be very close to the true one, the
di¤erence between them being in most cases trivial. Bu empirical situations
where risk heterogeneity is identical in both subgroups may be rare. If there is
no mortality di¤erential in the high education group, then there is a downward
bias in the coe¢ cient that increases in magnitude with the size of the mortality
di¤erential among the low education group, as shown in panel (b). Similarly,
panel (c) shows the bias corresponding to the situation where there is a mortal-
ity di¤erential among the high education group, but a larger di¤erential among
the low education group. In the �nal scenario shown in panel (d) the mortality
di¤erential in the high education group is proportional to the mortality di¤er-
ential in the low education group. Under these conditions the magnitude of the
downward bias does not depend on the size of the mortality di¤erential in the
low education group. Similar results to those shown in Figure 5 are obtained
when the populations are simulated with a higher level of baseline mortality for
the low education group relative to the high education group.
We now evaluate the performance of the proposed adjustment procedure by

examining the bias (i.e. coe¢ cient estimated without mortality - coe¢ cient esti-
mated with mortality) of the naive and adjusted estimates across a combination
of mortality di¤erentials for the low and high education groups. The results,
shown in Figure 6 , indicate a substantial reduction in the bias when the adjust-
ment procedure is used, a �nding which is robust to the sizes of the di¤erentials
among each education group. In the simulations upon which these results are
based, the baseline mortality is the same for the low and high education group,
but the �ndings are similar when we simulate populations with a higher level
of baseline mortality for the low education group. We also �nd that the adjust-
ment procedure performs fairly well under conditions where the mean waiting
times to diabetes is di¤erent for the low and high education groups. The results
up to this point have been obtained from simulations with a mean waiting time
of 25 years and a s.d. of 10 years. Figure 7 shows the bias of the naive and
adjusted estimates when the mean waiting time for the low education group is 5
years earlier than that of the high education group (20 versus 25 years), there is
only a mortality di¤erential (associated with diabetes) among the low education
group, and baseline mortality is the same for everyone in the population. As the
bias of the naive estimate increases with the mortality di¤erential in the low ed-
ucation group, the adjusted estimate has very little bias even at excessively high
levels. Although this robustness check is reassuring, more sensitivity analysis
are warranted with respect to distributional assumptions and larger di¤erences
in the distribution of waiting times across groups.
In some situations information may also be available on the time at which

the event of interest occurred, such as a self-reported age at which the indi-
vidual was diagnosed with diabetes. This information can be used to calculate
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the (conditional) mean age at which the event occurred (given that the event
has been observed), ~yxi , and used to evaluate adjustment factor '(�; ~yxi) for
the logistic regression. We explore the performance of the adjustment proce-
dure under these and other circumstances concerning the quality of the data.
Figure 8 shows the bias in the naive and adjusted estimates of the coe¢ cient
for education in the logistic regression model for various scenarios.6 The sce-
nario shown in panel (a) is the same as those seen earlier which do not use any
information on the time at which the individual was diagnosed with diabetes,
and is included as a reference point. Panel (b) contains the results based on
calculating the adjustment factor using the mean age at which individuals de-
veloped diabetes, a situation where the self-reported information is exact. In
reality there is likely to be some error in the self-reported information, which
we mimic in the third scenario, shown in panel (c), by adding a random draw
from a normal distribution with mean of 0 and standard deviation of 2 years to
the age when the individual developed diabetes (among those with diabetes).7

Finally, we expanded on the previous scenario by adding a systematic bias
that is positively associated with age so that older individuals are more likely
to report an age at diabetes closer to their age at observation, the results for
which are shown in panel (d). In each case where the self-reported information
is used (i.e. panels (b), (c), and (d)), the adjusted estimates result in a neg-
ative bias (i.e. estimated coe¢ cients that are greater than the actual value).
There is virtually no impact when the self-reports contain random noise, but
a systematic bias that is positively associated with age does appear to reduce
the bias, which suggests that the (conditional) means from the self-reports are
lower than those obtained from using the (log normal) density function. Thus,
it appears that the performance of the proposed adjustment is sensitive to the
value of the conditional mean age when the event occurred, ~yxi , and that dif-
ferences between the assumed distribution of waiting times and the distribution
that is generating the data may also hamper the performance of the adjustment
procedure. In each case, however, the adjusted estimates have equal or less bias
than the estimates from the naive model.

6 In these simulations, there is only a mortality di¤erential among the low education group,
the baseline mortality is the same for everyone, and the distribution of waiting times to
diabetes is also the same across education groups.

7 If adding this random error resulted in an age at diabetes that was greater than the age
at observation, then the age at observation was used as the age at diabetes.
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5 Summary and conclusion

By and large, conventional current status analysis gives short shrift to poten-
tial errors that arise when risk of attrition prior to the time marker at which
individuals�status is assessed, ts, may vary as a function of the occurrence/non-
occurrence of the event of interest. Through suitable approximations and sim-
ulations we show that even under mild conditions governing risk heterogeneity
the biases can be substantial and could lead to misleading inferences about the
time pro�le of the underlying risks and/or about the e¤ects of covariates. The
adjustment procedure we propose is simple, can be deployed with little e¤ort and
with minimal knowledge about the age pattern of the baseline risk of the com-
peting event attrition. Simulations show that the adjustment performs (a) much
better than the naive estimate, (b) is robust to the precise function governing
the incidence of the event of interest and (c) is quite insensitve to measurement
errors that may surface if the researcher uses self-reported information on time
of occurrence for the calculation of the adjustment factor.
Future research should proceed along three di¤erent routes. The �rst is to

investigate the asymptotic properties of the estimator suggested here. While in
the case of a logistc funtions these are well understood, it is not so for other
equally plausible functional forms. The second is to assess the robustness of the
adjustment to an inaccurate rendition of the baseline for the competing risk.
The integrated hazard on which the adjustment factor rests cannot be calculated
without knoweledge of this baseline hazard. In cases when the competing risk is
adult mortality, this may not be so di¢ cult as what matters for the adjustment
in these cases is to identify correctly the curvature of the hazard over the span
of ages of interest, not its level. But in other applaications it may not be so
clear what should the baseline hazard look like, let alone what its approximate
curvature may be within a particular range of durations. The third route of
research is to assess the performance of the proposed adjustment in a broad
array of empirical cases and determine the extent to which they lead to di¤erent
inferences.
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Figure 4: Age−specific probability of having diabetes, by education group, used in simulations.
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Figure 5: Estimated coefficients for the effect of education on the log odds of having diabetes (conditioning on age) in the 
 presence of differential mortality.
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Figure 6: Bias in the estimated coefficients for the effect of education on the log odds of having diabetes (conditioning 
 on age) for the naive and adjusted approaches.
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Figure 7: Bias in the estimated coefficients for the effect of education on the log odds of having diabetes (conditioning on age) for different 
 versions of the adjustment.
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