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ABSTRACT 

 

Objective  

To estimate the proportion of HIV infections stemming from acute stage cases using a model that 

incorporates information on partnership duration and overlap (concurrency) 

 

Methods 

We use a dynamic exponential random graph model (ERGM) to estimate partnership network 

parameters from data and drive a stochastic, dynamic simulation of HIV transmission through 

this network.  Data come from a study of sexual behavior using egocentrically-sampled networks 

in thirty Zimbabwean communities. The model incorporates relational types (marital/live-in, 

steady, casual) by sex, concurrency by relational type, and relational duration by relational type. 

We conduct sensitivity analyses for the impact of concurrency and with four published estimates 

of transmission probabilities by time since infection based on data from Wawer et al. [1] 

 

Results  

Our models generally predict that around 20-25% of transmissions stem from acute-stage 

infections, 30-50% from chronic-stage, and 30-45% from AIDS-stage. The role of acute 

infections was more strongly affected by concurrency than by the range of published stage-

specific transmission probabilities.  If we constrain the model to allow only serial monogamy, as 

opposed to reported levels of concurrency, the simulated epidemic is unsustainable.  The same is 

true if the acute transmission peak is eliminated. 
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Conclusions 

Although acute transmission appears to account for a minority of new infections, reducing its 

impact  -- by reducing either acute viral load or the probability someone has additional partners 

during early infection – could bring the epidemic below the reproductive threshold in 

populations marked by low rates of partner change but relatively high rates of long-term partner 

concurrency. 

 

Key words: HIV/AIDS, mathematical modeling, concurrency, acute infection, sub-Saharan 

Africa, Zimbabwe 
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INTRODUCTION 

 

HIV infection is defined by three general stages of disease – acute infection, chronic infection, 

and AIDS – coinciding with variation in viral load, CD4 cell count, and clinical manifestations 

[2-5]. Transmission probability also peaks during acute infection, decreases during chronic 

infection, and increases again during AIDS [1]. However, the population-level impact of this 

variation is not straightforward. The fraction of new infections stemming from each stage 

depends on multiple biological and behavioral processes, including relative transmission 

probabilities, stage duration, distribution of individuals by stage, and partnership dynamics.  

 

For over a decade researchers have considered the proportion of transmission stemming from 

people within each stage [6-9]. However, solid empirical estimates of stage-specific per-coital 

act transmission probabilities were lacking until a recent landmark study [1]. Other investigators 

have since reevaluated the study data to develop new stage-specific per-act estimates [10-12]. 

Using these calculations, researchers have estimated the proportion of new HIV infections by 

stage [10-18]. Methods and results have varied widely, concluding that acute infections generate 

anywhere from 1-41% of infections in different populations (Table 1). Additional work, largely 

among homosexually-active men, has estimated the proportion using phylogenetics, concluding 

that nearly half of transmissions stems from acute-phase cases [19-21]. 

 

None of these studies explores a fully dynamic model incorporating behavioral data on relational 

overlap, although some have discussed the importance of doing so [12]. In order for someone to 

transmit while acutely infected, they must acquire the infection from one partner and transmit to 



5 

another during a brief window; i.e., they must have two partnerships close or overlapping in 

time. Previous modeling work has shown that partnership timing can have a major impact on the 

size and rapidity of HIV spread [22, 23], although this work did not incorporate stage-varying 

transmission. This paper integrates recent transmission estimates with data on partnership 

formation, dissolution and overlap from Zimbabwe using new methods that provide a unified 

framework for statistical estimation and epidemic simulation. 

 

METHODS 

 

Data derive from the pre-intervention baseline survey of sexually active adults in ZiCHIRe, the 

Zimbabwe arm of a five-nation popular opinion leader behavioral intervention study. The overall 

study and Zimbabwe-specific additions have been described [24, 25]. Respondents were asked 

their number of sexual partners in the previous 12 months for three partnership types 

(spouse/live-in; steady; casual), which we collapsed into two (Type I = spouse/live-in, Type II = 

steady/casual).  For up to the four most recent partners per category, respondents were asked for 

date (by month) of the first and the most recent time they had sex with this person. These are the 

questions recommended by the UNAIDS reference group on Estimates, Modeling and Projection 

[26]. 

 

Point partnership distributions. A person’s “point partnership count” is their number of ongoing 

partnerships at a given time. The survey did not ask whether partnerships were ongoing, so we 

could not calculate point partnership counts at interview date. However, partnership start- and 

end-dates allowed us to estimate counts for each month in the recent past, as recommended by 
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the UNAIDS reference group. We selected the period two months before interview as our cross-

section, although this is only an approximation for multiple reasons; see Supplemental Digital 

Content (SDC). Table 2a shows the resulting point partnership distribution. 

 

We used these data to construct an artificial network of 1,000 men and 1,000 women for model 

estimation; we selected a 1:1 sex ratio in the absence of precise data about the correct value for 

this population. An agent-based model of a closed, sex-balanced heterosexual population 

requires equal numbers of male and female partnerships. In our data, women report a point 

partnership mean of 0.62, compared to 0.70 for men, a difference of 0.08 partnerships. For the 

empirical population, this is likely due to it not being closed (i.e. men having more partnerships 

outside the target population), a greater proportion of men not fulfilling the study criterion of 

“ever sexually active”, and/or the sex ratio not being 1:1 (with one report finding a nationwide 

sex ratio for ages 15-64 in Zimbabwe as low as 81 males per 100 females [27]). For our 

simulated population, which is sex-balanced and closed, we explore a base method for 

incorporating the data (by assuming the midpoint of sex-specific reports to be correct; see SDC) 

and a second method during the sensitivity analyses (see below). 

 

Women also define a higher fraction of partnerships as Type I (54.9%) than do men (31.0%). We 

take the midpoints of the sex-specific reports as our estimates (see SDC). Implementing these 

assumptions led to the expected counts in Table 2b.  

 

Durations: Questions on dates of first and last sex for partnerships two months before interview 

drove our initial estimates for average duration of Type I (45.3 months) and Type II (11.2 
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months) partnerships, assuming a 1/3-month duration for partnerships beginning and ending in 

the same month. Given the bias towards observing longer partnerships in a cross-sectional 

survey, we re-weighted partnerships according to their relative inclusion probability, equivalent 

to using the harmonic mean of observed durations. 

 

Partnership model estimation. The above statistics are used to estimate a partnership network 

model, which then drives a stochastic network simulation that has these statistics as their 

expected values for partnership durations and sex- and relational type-specific concurrency. We 

use recent developments in exponential random graph modeling (ERGM) [28-35], with an 

extension for dynamic networks [36], to estimate network model parameters. In the cross-

sectional ERGM framework, a population is represented by a network comprising n nodes 

(persons) and a matrix Y  of pairwise partnerships (wherein 1ijY =  signifies a partnership 

between i,j; 0ijY = signifies absence). One may also subset these matrices by nodal and/or dyadic 

attributes. The framework allows one to model probabilities of partnerships forming or 

dissolving as a function of individual nodal attributes (e.g. disease status), pairwise nodal 

attributes (e.g. age-based assortative mixing), partnership type, and relational configurations (e.g. 

each person’s number of ongoing partnerships), and to estimate coefficients for these effects 

jointly from data. The general form is: 

 

 ( ) ( )logit  nodes, , , , ,c T c

ij ij n d ij ij n dY y n gθ= = ∆x x y y x x  
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where c

ijy is the complement of ijy (the relational values for all actor pairs besides i,j); nx and 

dx are nodal and dyadic covariate matrices, respectively; ( ), ,n dg y x x is an arbitrary vector of 

statistics measured on y; ( ), ,c

ij n dg∆ y x x is the change in those statistics when ijy  changes from 0 

to 1; and θ  is a vector of coefficients.  Any set of statistics can be hypothesized to affect network 

probability and thus be included in ( ), ,n dg y x x . The logit formulation highlights the partnership 

as unit of analysis. Although it resembles a simple logistic regression model, the dependence 

among observations (induced when g contains statistics such as point partnership counts) makes 

inference considerably more complex. For the discrete dynamic extension [36], the probability of 

Y at time t is a function of its cross-sectional statistics and of the ijy values at t-1; this is 

accomplished using separate ERGM formulas for relational formation and dissolution. 

 

We model a population with three nodal attributes (sex, HIV-status, time since infection) and one 

dyadic attribute (Type I or II). Statistics in g for our baseline formation model (each of whose 

index ( ), ,n dy x x is left off for readability) are: 

 

 { },1, ,1, ,1, ,1, ,2, ,2, ,3,;  ;  ;  ;  ;  ;  ;  f I f m I m m f me u u u u u v v
� � � � � �

 

 

where: 

 

• te = total partnerships of type t; 

• , ,s n tu = # of individuals of sex s in exactly n partnerships of type t 
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• ,s nv = # of individuals of sex s in ≥ n partnerships of type t 

 

and � indicates both partnership types combined. Model constraints include ,2,f Iv = ,3,m Iv = 0. 

 

The statistics in the g vector for our baseline dissolution model include: 

 

{ };  Ie e
�

 

 

which implies that all partnerships within a type have identical daily dissolution probabilities. 

 

These statistics are constructed to capture the expected proportion of each sex with given Type I 

and Type II point partnerships counts, and expected durations of partnerships by type. Numerous 

model constraints mean that additional statistics beyond those explicitly included are fit 

automatically; see the SDC. Collectively, these provide a detailed specification of concurrency 

patterns. 

 

Partnership network simulation. One strength of the ERGM framework is that network 

simulation is driven by the same model as estimation. We implement both processes using 

statnet (http://www.statnetproject.org), whose core algorithms employ Markov chain Monte 

Carlo (MCMC); fitting details used (e.g. burn-in, simulation sample) are available from the 

authors on request. The stochastic model estimated above drives dynamic network simulation, 

ensuring that the expected values of network statistics are preserved while the values themselves 

vary stochastically around these expectations at every cross-sectional slice. 
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Epidemic simulation.  For each timestep, each serodiscordant couple's transmission probability is 

determined by the positive partner's time since infection.  Given existing uncertainty about stage-

specific transmission probabilities, we treat this as a sensitivity parameter.  We consider four sets 

of transmission probabilities, outlined in Table A1: “Wawer” [1], “Pinkerton” [10], “Abu-

Raddad” [11], and “Hollingsworth” [12]. The first three each contain three sub-models (High, 

Middle, Low) based on assumptions about coital frequency during the final five months of 

AIDS, on which the source papers lack data. We assume mean survival of 122 months after 

infection [12], and 40 years in the sexually active pool otherwise. A dying individual is 

immediately replaced by a new seronegative. 

 

We initiate simulations with one male and one female infected. However, this implies that we are 

simulating an epidemic that starts with partnership rates observed in 2005. Since sexual behavior 

has likely changed over time with awareness of the epidemic's severity, it is important not to 

interpret our simulations’ transitory dynamics as representing specific years. Our approach is 

best suited to projecting equilibrium dynamics for a given scenario.  We run each simulation for 

6000 months (500 years).  

 

Alternative scenarios. We also considered three sensitivity or counterfactual scenarios, each 

using the Hollingsworth transmission estimates: 

 

Male reports: here, rather than assuming the mid-point of male and female sexual behavior 

reports, we treat the difference as a function of female under-reporting. We repeat model 
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estimation and simulation using the slightly higher male-reported point partnership mean. 

 

No-acute-peak: to explore the potential impact of an intervention eliminating the acute infection 

peak, we considered additional simulations in which Hollingsworth’s chronic-stage transmission 

probability is also applied to the acute stage. 

 

No-concurrency: to explore the potential role that concurrency plays in amplifying the impact of 

acute-stage transmission, and to consider potential impacts of a concurrency intervention, we 

estimated parameters for a model with identical point partnership mean and partnership durations 

as our data, but in which individuals’ point partnership counts were constrained to 0 or 1.  This 

preserves the total number of partnerships at any timepoint, and the total time spent in 

partnerships, from the baseline runs; effectively this reallocates observed concurrent partnerships 

to isolates to satisfy the serial monogamy constraint. 

 

RESULTS 

 

Point partnership mean was slightly higher for males than females (mean = 0.70 vs. 0.62), as 

previously discussed, as was standard deviation (0.779 vs. 0.577). Women were more likely to 

report exactly one partnership (55.6% vs. 43.4%); conversely, reports of >1 ongoing partnership 

were higher among men (11.6%  vs. 2.8%), as were reports of no ongoing partnerships (45.0% 

vs. 41.6%).  Overall, the point prevalence of concurrency was 7.3%. 

 

Table A2 provides the coefficient estimates for our baseline model, and Figure A1 shows a 
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random cross-sectional draw from the network simulation. Statistics are consistent with the 

proposed probability model (e.g. 661 mean partnerships); the network is, in fact, quite sparse, 

and most members reside in cross-sectional relational components of 0-2 people.  

 

Some models never generated a sustained run across 100 simulations. For those that did, Figure 

1a shows mean HIV prevalence across five sustained runs. The Hollingsworth and Pinkerton-

High models yield the only mean prevalence projections that stabilize above 5%.  

Hollingsworth’s assumption of no coital acts during the last ten months of AIDS seems more 

realistic than assuming no coital reduction with the Pinkerton-High models; we thus adopt the 

Hollingsworth model as our base comparative model in subsequent analysis, conduct five 

additional simulations with it, and focus on it in more detail here (Figure 2). To see whether the 

proportion of transmissions stemming from each stage changes over time, we define the stages 

(for Figure 2a only) using Hollingsworth’s classification (acute = 3 months; chronic = 100 

months; AIDS = 19 months, including 10 without coital acts); we then plot mean fraction of 

transmissions by stage across the ten Hollingsworth runs against time. Although HIV prevalence 

stabilized very slowly (Figure 1a), the transmission proportions by stage stabilize very quickly. 

The latter are thus well described by the mean for each series, and we use this in subsequent 

analyses (excluding the first decade to eliminate any transient burn-in). Figure 2b shows a 

“cumulative transmission curve” for the age of all source infections in the ten base 

Hollingsworth runs. On average, about 22%, 49%, and 29% of transmissions stem from acute-, 

chronic- and AIDS-stage infections, respectively. There is very little variation across runs, given 

the large number of transmission events (mean = 4,736). Proportions of infection by stage are 

tabulated for these and all subsequent runs in Table A3. 
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Results from additional transmission probability scenarios are found in Figure 3 and Table A3.  

The Pinkerton and Wawer runs show a similar role for the acute stage as did Hollingsworth, 

while the Abu-Raddad runs suggest a lower role. All three models predict that more infections 

occur during AIDS stage (~40) than does the Hollingsworth model. 

 

Using men’s reports instead of the midpoint estimate of the point partnership mean increases this 

value by just 0.04 (from 0.66 to 0.70), and the fraction of women with concurrent partnerships 

rises 2.2 percentage points (from 2.8 to 5.0).  This small change nearly doubles the equilibrium 

prevalence of the epidemic (Figure 2b). However, it does not change the fraction of 

transmissions by stage; the cumulative transmission curve is indistinguishable from baseline (not 

shown). 

 

Assuming no acute infection peak (and using the midpoint behavioral estimates for 

concurrency), the epidemic appears to be unsustainable; it dies out long before 6,000 months in 

each of 100 simulations. Thus, even though the acute stage only contributes about 20% of 

infections (across the various transmission models), reducing transmissibility during acute 

infection down to chronic levels appears sufficient to send the epidemic into extinction. 

 

The no-concurrency model also leads to epidemic extinction in all 100 runs. That is, if the 

partnerships reported in the survey were to occur sequentially instead of concurrently (but with 

the same mean degree of 0.66 partnerships in the cross section), and had the same durations and 

levels of coital frequency, the epidemic would not be sustainable.   
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If we look at the first 5% of the time series (300 months) for the runs that last this long, 

eliminating concurrency reduces the proportion of transmission stemming from acute infections 

(using Hollingsworth’s three month definition) by half, down to 11.3%, before the epidemic dies 

out. Eliminating the acute infection peak reduces the proportion down to 0.0%. 

 

DISCUSSION 

 

Our models generally predict that in equilibrium, and with concurrency, ~20% of transmissions 

would stem from acute-stage infections in Zimbabwe, and ~30-45% from AIDS-stage infections. 

The former figure was not greatly affected by the exact stage-specific transmission probabilities 

assumed among published estimates, with the exception of the Abu-Raddad estimates. By 

comparison, Hollingsworth et al. [12] estimate 31% under random mixing, and Abu-Raddad and 

Longini [11] estimate ~5-13% at equilibrium (as seen in their Figures 1b and 2b).  Pinkerton [10] 

estimates that 89.1% of the infections occurring during the first 20 months occur during the acute 

phase; for the same period our model shows 76% using Pinkerton’s parameters and 75% using 

Hollingsworth’s.  All of these differences are likely due to the dramatically different ways in 

which we modeled behavior. Unlike all previous models, our approach incorporates the observed 

timing and sequence of an individual’s multiple partnerships (whether concurrent or sequential), 

which should affect the probability of acquiring infection from one person and transmitting to 

another during a narrow time period. Differences may also result from real differences in 

behavior among different sub-Saharan African populations, although comparable data and 

models on relational timing in other settings would be needed to answer this question for sure. 
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Although only a small fraction of infections directly stemmed from acute index cases, we find 

that eliminating this peak would drive the epidemic below the reproductive threshold and into 

extinction, at least for this population. The same is true for concurrent partnerships; eliminating 

concurrency, while keeping cumulative partner numbers, durations, and coital frequencies the 

same, leads to epidemic extinction.  In part, this is because eliminating concurrency reduces the 

impact of acute infection, cutting the proportion of infections from this stage in half before 

extinction occurs. These observations suggest that both behavioral and biomedical interventions 

reducing the impact of the acute stage could have enormous population-level impacts. 

 

The Abu-Raddad numbers seemed least able to sustain a realistic epidemic, and the 

Hollingsworth numbers the most. The epidemic created by the Hollingsworth numbers, based on 

the average of male and female reports of ongoing partnerships, was still small. However, using 

the average number of ongoing partnerships reported by males increased the epidemic 

substantially.  The difference in behavior was not large:  an increase in 0.04 partners per person 

in the cross-section, and a 2.2 percentage point increase in the number of women with concurrent 

partners.  This small change in behavior led to a 100% increase in equilibrium prevalence.  This 

suggests that transmission in this population is very close to a behavioral “tipping point” wherein 

small changes in partnership rates, particularly concurrent partnerships, can have large effects on 

network connectivity and HIV prevalence.  

 

This has implications both for prevention and for understanding the epidemiology of HIV in 

Africa generally. In order to match observed epidemic trajectories, previous modeling studies 
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that have not dealt explicitly with concurrency have had to posit the existence of significant 

fractions of the population with very high numbers of partners every year sustained over many 

years.  Examples include 6.7% of the population in Yaoundé having an average of 2,870 

partnerships per person, each at least one week long, over 35 sexually-active years [11], and 10% 

of the population in sub-Saharan Africa generally having an average of 723 partnerships per 

person over 40 years, each with 25 sex acts or more [37].  These behavioral patterns are not 

based on observed data, but they are apparently necessary, in the absence of concurrency, to 

generate realistic epidemics.  The strong disconnect between these assumptions and empirical 

data has been criticized [38], and has been used to argue for the importance of non-sexual 

transmission routes in Africa [39]. The findings here suggest a different interpretation.  Our work 

adds to earlier studies [40] showing that far smaller numbers of partners are necessary to 

generate substantial HIV epidemics when concurrency is explicitly measured and modeled. In 

countries where concurrency for women is stigmatized, it is likely that this leads to some level of 

social desirability bias and underreporting.  Our findings also suggest that correcting for even a 

tiny amount of underreporting among women can yield large increases in predicted equilibrium 

prevalence, and generate realistic epidemics. 

 

Our model included numerous simplifying assumptions that must be remembered when making 

inferences.  Our data source, and thus our model, excluded people who had never had sex, as 

well as commercial sexual contacts.  Each of these should affect our prevalence estimates, albeit 

in opposite directions.  We did not consider additional network structuring induced by 

geographic mixing, nor mixing by age or other exogenous demographic or social variables. We 

did not consider variation in circumcision status or co-infection with STDs or other infections. 
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Our estimates for concurrency are subject to several sources of measurement error.  Some may 

lead to overestimates (e.g., dates reported by month only), others to underestimates (e.g. low 

coital frequency, social desirability bias).  Our estimates of stage-specific transmission 

probabilities and coital frequency come from a single study, and are also subject to measurement 

error. There remains uncertainty in the duration and magnitude of the acute infection window, 

and in coital frequency during late-stage AIDS.  For many of these limitations, the sensitivity 

analyses we conduct on transmission probabilities and behavioral parameters can give some 

intuition regarding the impact of these factors on model outcomes.  

 

Finally, all of the behavioral parameters – especially those used for network simulation – are 

population-specific.  This is true for all modeling studies, and the constraint this places on 

inference is often underestimated.  Given the dramatic impacts of small changes in behavioral 

assumptions on equilibrium prevalence that we found, it is clear that estimates of the stage-

specific fraction of infections, from any modeling study, must be limited to the population from 

which the behavioral data are drawn.  

 

Despite these limitations, we were able to model sexual behavior and patterns of partnership 

timing and overlap much more accurately than previous studies, and this clearly matters for 

understanding transmission during acute infection.  A short acute infection window will always 

have a strong interaction with rapid serial partner acquisition and concurrency in sexual 

transmission dynamics. These patterns of relational timing vary widely among populations in 

which HIV is spread, and it is therefore important to model them with some fidelity.  The new 

modeling tools that we employ here can do that, using simple egocentrically sampled network 
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data.  The insights these new methods provide are critical for “knowing your epidemic,” and for 

developing population-specific prevention packages. 

 

 



19 

ACKNOWLEDGMENTS 
 
The authors would like to thank the study participants as well as Mark Handcock, David Hunter, 

Pavel Krivitsky, Carter Butts, and the entire statnet development team. 

 

SMG and SC were supported in part by the Puget Sound Partners for Global Health (Research 

and Technology Project Award 26145). Data collection was supported by NIH (U10MH061544 

and RZIAA014802). The models and software used in this study were developed with support 

from NIH (R01 HD041877 and R01 DA12831). SC was partially supported by NIH (K99 

HD057553 and P30 AI27757). 

 

SMG was responsible for conceiving of the modeling project, conducting the majority of the 

modeling, and primary preparation of the manuscript.  SC conducted secondary data analysis and 

aided in the modeling work and manuscript preparation.  DK, DEM, and AG designed the survey 

instrument, oversaw the data collection, conducted the primary data analysis, and provided 

assistance in manuscript preparation.  MM contributed to project conception, data analysis, and 

manuscript preparation.



20
 

T
A

B
L

E
 1

: 
P

re
vi

ou
s 

st
ud

ie
s 

on
 p

ro
po

rt
io

n 
of

 H
IV

 i
nf

ec
ti

on
s 

by
 s

ta
ge

 o
f 

in
de

x 
ca

se
 

 A
u
th

o
r 

(y
ea

r)
 

P
o
p
u
la

ti
o
n
 

M
et

h
o
d
 

%
 

in
fe

ct
io

n
s 

fr
o
m

 a
cu

te
 

st
a
g
e 

D
u
ra

ti
o

n
 o

f 

a
cu

te
 

st
a
g
e 

C
o
m

m
en

ts
 

P
in

ke
rt

on
 

(2
00

8)
 [

10
] 

H
et

er
os

ex
ua

l 
tr

an
sm

is
si

on
, 

U
ga

nd
a 

co
m

pu
te

r-
ba

se
d 

m
od

el
, 

li
ke

li
ho

od
 e

st
im

at
e 

(B
er

no
ul

li
 t

ra
ns

m
is

si
on

 
m

od
el

) 

--
 

49
 d

ay
s 

 
P

in
ke

rt
on

 d
oe

s 
no

t 
es

ti
m

at
e 

pr
op

or
ti

on
 o

f 
al

l 
in

fe
ct

io
ns

 s
te

m
m

in
g 

fr
om

 a
cu

te
 s

ta
ge

, 
bu

t 
do

es
 s

ta
te

 t
ha

t 
hi

s 
m

od
el

 p
re

di
ct

s 
th

at
 

ou
t 

of
 t

he
 i

nf
ec

ti
on

s 
oc

cu
rr

in
g 

in
 t

he
 f

ir
st

 2
0 

m
on

th
s,

 8
9.

1%
 a

re
 d

ue
 t

o 
ac

ut
e 

st
ag

e 
in

de
x 

ca
se

s.
 T

hi
s 

nu
m

be
r 

is
 b

as
ed

 o
n 

th
e 

12
 

tr
an

sm
is

si
on

 e
ve

nt
s 

in
 t

he
 “

in
ci

de
nt

 i
nd

ex
 

pa
rt

ne
r”

 c
ou

pl
es

 f
ro

m
 W

aw
er

 (
20

05
) 

H
ol

li
ng

sw
or

t
h 

et
 a

l.
 

(2
00

8)
 [

12
] 

 

H
et

er
os

ex
ua

l 
tr

an
sm

is
si

on
, 

U
ga

nd
a 

P
ar

am
et

ri
c 

m
od

el
-b

as
ed

 
li

ke
li

ho
od

 e
st

im
at

io
n 

9%
 , 

31
%

  
2.

9 
m

on
th

s 
9%

 u
nd

er
 a

ss
um

pt
io

n 
of

 s
er

ia
l 

m
on

og
am

y;
 

31
%

 u
nd

er
 a

ss
um

pt
io

n 
of

 r
an

do
m

 m
ix

in
g 

A
bu

-R
ad

da
d 

an
d 

L
on

gi
ni

 
(2

00
8)

 [
11

] 

H
et

er
os

ex
ua

l 
tr

an
sm

is
si

on
, 

su
b-

S
ah

ar
an

 
A

fr
ic

a 

D
et

er
m

in
is

ti
c 

co
m

pa
rt

m
en

ta
l 

m
at

he
m

at
ic

al
 m

od
el

 
13

%
, 1

8%
 

2.
5 

m
on

th
s 

T
he

se
 e

st
im

at
es

 a
re

 t
he

 c
u
m
u
la
ti
ve

 
pr

op
or

ti
on

s 
by

 a
pp

ro
xi

m
at

e 
eq

ui
li

br
iu

m
 

(y
ea

rs
 2

05
0 

an
d 

20
80

) 
fo

r 
K

is
um

u 
an

d 
Y

ao
un

dé
, r

es
pe

ct
iv

el
y,

 a
nd

 t
hu

s 
in

cl
ud

e 
th

e 
ea

rl
y 

ep
id

em
ic

 a
s 

w
el

l.
  T

he
 p

ro
po

rt
io

n 
by

 
st

ag
e 

pe
r 

un
it

 t
im

e 
at

 e
nd

em
ic

 e
qu

il
ib

ri
um

 
ap

pe
ar

s 
to

 b
e 

 ~
8%

 a
nd

 ~
15

%
, r

es
pe

ct
iv

el
y 

(F
ig

ur
es

 1
b 

an
d 

2b
).

 
H

ay
es

 &
 

W
hi

te
 (

20
06

) 
[1

4]
 

H
et

er
os

ex
ua

l 
tr

an
sm

is
si

on
, 

U
ga

nd
a 

D
et

ai
ls

 u
nk

no
w

n 
[n

ot
 

de
sc

ri
be

d 
in

 l
et

te
r]

 
23

%
, 4

1%
 

5 m
on

th
s 

41
%

 i
f 

ea
ch

 s
er

oc
on

ve
rt

er
 h

as
 o

ne
 

su
bs

eq
ue

nt
 s

er
on

eg
at

iv
e 

pa
rt

ne
r;

 2
3%

 i
f 

al
l 

of
 e

ac
h 

se
ro

co
nv

er
te

r’
s 

su
bs

eq
ue

nt
 p

ar
tn

er
s 

ar
e 

su
sc

ep
ti

bl
e 

(s
uc

h 
as

 a
 s

ex
 w

or
ke

r 
in

 a
 

lo
w

-p
re

va
le

nc
e 

se
tt

in
g)

. 
C

oh
en

 &
 

P
il

ch
er

 
(2

00
5)

 [
13

] 

H
et

er
os

ex
ua

l 
tr

an
sm

is
si

on
, 

U
ga

nd
a 

R
ev

ie
w

 o
f 

W
aw

er
 2

00
5 

da
ta

 
~

50
%

 
5 m

on
th

s 
In

te
rp

re
ti

ng
 t

hi
s 

nu
m

be
r 

as
 a

 p
op

ul
at

io
n-

ba
se

d 
es

ti
m

at
e 

m
ay

 b
e 

in
ac

cu
ra

te
.  

S
ee

, f
or

 
in

st
an

ce
, P

in
ke

rt
on

 e
t 

al
.’

s 
di

sc
us

si
on

 (
) 

 



21
 

P
in

ke
rt

on
 

(2
00

7)
 [

15
] 

U
S

 p
op

ul
at

io
n 

A
 “

si
m

pl
e”

 m
ul

ti
pl

ic
at

iv
e 

m
at

he
m

at
ic

al
 m

od
el

 
8.

6%
  

49
 d

ay
s 

In
 a

 v
ar

ie
ty

 o
f 

se
ns

it
iv

it
y 

an
al

ys
is

, e
st

im
at

es
 

ra
ng

ed
 f

ro
m

 2
.5

 -
 1

7.
3%

. 
P

ra
bh

u 
(2

00
9)

 [
16

] 
 

U
S

 p
op

ul
at

io
n 

S
am

e 
as

 P
in

ke
rt

on
 (

20
07

) 
11

.4
%

 
49

 d
ay

s 
P

ra
bh

u 
et

 a
l 

up
da

te
d 

P
in

ke
rt

on
 (

20
07

) 
w

it
h 

ne
w

 H
IV

 i
nc

id
en

ce
 d

at
a 

in
 t

he
 U

S
 

X
ir

id
ou

 e
t 

al
 

(2
00

4)
 [

18
] 

M
S

M
 i

n 
A

m
st

er
da

m
 

se
t 

of
 d

if
fe

re
nt

ia
l 

eq
ua

ti
on

s 
11

%
 

3 m
on

th
s 

35
%

 o
f 

H
IV

 t
ra

ns
m

is
si

on
s 

fr
om

 c
as

ua
l 

pa
rt

ne
rs

 a
nd

 6
%

 o
f 

tr
an

sm
is

si
on

s 
fr

om
 

st
ea

dy
 p

ar
tn

er
s 

R
ap

at
sk

i 
et

 
al

. (
20

05
) 

[1
7]

 

M
S

M
 i

n 
S

an
 

F
ra

nc
is

co
 

P
ie

ce
-m

ea
l 

m
od

el
: 

li
ke

li
ho

od
 

es
ti

m
at

es
, t

he
n 

de
te

rm
in

is
ti

c,
 

co
m

pa
rt

m
en

ta
l 

m
od

el
 w

it
h 

st
ag

e 
of

 d
is

ea
se

 

1.
3%

 
6 m

on
th

s 
T

hi
s 

m
od

el
in

g 
w

or
k 

su
gg

es
te

d 
th

at
 t

he
 l

at
e-

st
ag

e,
 m

ay
 a

cc
ou

nt
 f

or
 t

he
 m

aj
or

it
y 

of
 

di
se

as
e 

tr
an

sm
is

si
on

 (
97

%
) 

in
 s

et
ti

ng
s 

w
it

h 
es

ta
bl

is
he

d 
ep

id
em

ic
s;

 h
ow

ev
er

, t
he

se
 

fi
nd

in
gs

 h
av

e 
be

en
 d

is
pu

te
d 

in
 t

he
 l

it
er

at
ur

e 
[4

1]
.  

 
B

re
nn

er
 e

t 
al

. 
(2

00
7)

 [
21

] 
M

aj
or

it
y 

M
S

M
, 

U
rb

an
 Q

ue
be

c 
P

op
ul

at
io

n-
ba

se
d 

ph
yl

og
en

et
ic

 a
pp

ro
ac

h 
49

.4
%

 
N

/A
 

 

P
ao

 e
t 

al
. 

(2
00

5)
 [

19
] 

M
aj

or
it

y 
M

S
M

, 
U

ni
te

d 
K

in
gd

om
 

P
op

ul
at

io
n-

ba
se

d 
ph

yl
og

en
et

ic
 a

pp
ro

ac
h 

34
%

 
N

/A
 

 

Y
er

ly
 e

t 
al

. 
(2

00
1)

 [
20

] 
S

w
is

s 
H

IV
  

co
ho

rt
 s

tu
dy

  
(4

2%
 M

S
M

, 
13

%
 I

D
U

) 

P
op

ul
at

io
n-

ba
se

d 
ph

yl
og

en
et

ic
 a

pp
ro

ac
h 

30
%

 
N

/A
 

 

     



22 

TABLE 2: Cross-sectional network statistics 
 
          
a) POINT PARTNERSHIPS   # of Type II partnerships    
 BY TYPE             
     0 1 2 3 4 5 6   

 FEMALES  0 843 455 32 6 2 0 1 1,339  
   1 673 12 1 0 0 0 0 686  
   2 1 0 1 0 0 0 0 2  
    1,517 467 34 6 2 0 1 2,027  
             
             
    0 1 2 3 4 5 6   

 MALES  0 978 576 128 25 11 0 0 1,718  
   1 366 49 16 4 1 0 0 436  
   2 11 4 0 0 0 0 0 15  
   3 1 0 0 0 0 0 0 1  
   

# 
of

 T
yp

e 
I 

pa
rt

ne
rs

hi
ps

 

4 1 0 0 0 0 0 0 1  
     1,357 629 144 29 12 0 0 2,171  
              
              
 

TOTAL    0 1 2 3 4 5 6 Mean 
Std. 
dev. 

 POINT    F 843 1128 45 7 3 0 1 0.620 0.577 
 PARTNERSHIPS   M 978 942 188 46 16 1 0 0.702 0.779 
              

 

        
b) POINT PARTNERSHIPS  # of Type II partnerships  
 BY TYPE          
     0 1 2 3+   

 FEMALES  0 0.399 0.289 0.034 0.005 0.727  
   1 0.262 0.010 0.000 0.001 0.273  
    0.661 0.299 0.034 0.006 1.000  
          
          
    0 1 2 3+   

 MALES  0 0.483 0.208 0.039 0.011 0.741  
   1 0.200 0.033 0.009 0.003 0.245  
   

# 
of

 T
yp

e 
I 

pa
rt

ne
rs

hi
ps

 

2 0.009 0.004 0.001 0.000 0.014  
     0.692 0.245 0.049 0.014 1.000  
           
           
 TOTAL    0 1 2 3+ Mean Std. dev. 
 POINT   F 0.399 0.551 0.044 0.006 0.661 0.615 
 PARTNERSHIPS   M 0.483 0.408 0.072 0.023 0.661 0.772 
           

 
a) observed in the Zimbabwe survey data. Figures represent counts. 
b) reconciled for model estimation. Figures represent proportions of the sex-specific population. 
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FIGURE 1: HIV prevalence 
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a) Transmission models. All Wawer-Low, Abu-Raddad-Medium, and Abu-Raddad-Low runs die 
out. 
b) Behavioral models. All no-acute-peak and no-concurrency runs die out quickly. 
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FIGURE 2: Hollingsworth model 
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a) Proportion of new infections by stage over time, averaged across all ten Hollingsworth 
base model runs 

b) Cumulative transmission curve, i.e. the cumulative proportion of transmissions stemming 
from infections no older than a given age.  Each line represents one of ten Hollingsworth 
base model runs.  The first 10 years of simulation “burn-in” are excluded.  The horizontal 
line at the end of the chart is due to the assumption of no sex during the last ten months of 
infection for this model.  
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FIGURE 3: Other transmission models 
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(a) Pinkerton 
(b) Wawer 
(c) Abu-Raddad 
 
Each line represents one simulation, with five simulations per scenario. The Wawer-Low, Abu-
Raddad-Medium, and Abu-Raddad-Low runs consistently die out and are not shown. 
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