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Abstract 

 
 This paper estimates the effects of temperature and humidity on mortality rates in the 

United States (c. 1968-2002) in order to provide insight into the potential health impacts of 

climate change. I find that humidity, like temperature, is an important determinant of mortality. 

Coupled with Hadley CM3 climate-change predictions, my estimates imply that mortality rates 

are likely to increase by about 1.3 percent by the end of the 21st century (c. 2070-2099). 

Although small on the aggregate, the bias from omitting humidity has significant implications for 

evaluating the distributional impacts of climate change on health. 
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1 Introduction 

The earth’s climate is expected to become hotter and more humid in the coming century 

due to man-made pollution.  The goal of this paper is to determine to what extent these climatic 

changes will affect human health conditions in the United States. Although previous research has 

estimated the potential health costs of warming temperatures (e.g., Deschênes and Greenstone, 

2007), this study is the first to examine the impact of rising humidity levels. I use a within-state 

identification strategy to estimate the effects of temperature and humidity on monthly mortality 

rates over a 35-year period (c. 1968-2002). I then make end-of-the-21st-century projections using 

my mortality estimates and climate-change predictions from the Hadley CM3 climate model. In 

addition to contributing to the evaluation of optimal climate-change mitigation policies, my 

research adds to the literature on the importance of the weather, and in particular humidity, as a 

determinant of human health and welfare.  

The expected net effect of climate change on mortality is ambiguous prima facie. 

Exposure to extreme temperatures and/or extreme humidity levels increases the risk of mortality 

mostly through impacts on the cardiovascular and respiratory systems.1 In the coming century, 

the weather is expected to become “more extreme” during summer months (i.e., hotter and more 

humid) but “less extreme” during winter months (i.e., less cold and less dry).2 As such, mortality 

rates are likely to increase during summer months but decrease during winter months. In simple 

terms, this study determines the net effect of these climatic changes on mortality.  

Although the focus of this paper is on mortality, I also estimate the effects of climate 

change on energy consumption. Heating, cooling, dehumidification, and humidification represent 

                                                 
1 This is discussed in greater detail in the “The Relationship Between Temperature, Humidity, and Mortality” 
section below. 
2 Among others, Gaffen and Ross (1999), Willett et al. (2007), and IPCC (2007) document these climatic changes. 
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an important channel through which individuals can mitigate the effects of adverse weather 

conditions. Incorporating the costs of this self-protection is important for developing credible 

estimates of the “heath-related” costs of climate change (Deschênes and Greenstone, 2007). 

In this paper, I make two key contributions to the literature: First, I provide 

comprehensive estimates of the effects of humidity on mortality (in addition to estimating the 

effects of temperature on mortality). As Schwartz et al. (2004) note, “the effects of humidity on 

mortality have received little investigation.” Conversely, the effects of temperature have received 

much more attention in the literature.3 Furthermore, the humidity-mortality studies that do exist 

are subject to concerns of external validity because they rely on datasets with small sample 

sizes.4 Using 35 years of weather and mortality data from the entire United States, my work is 

the first to provide extensive evidence that humidity is, in fact, an important determinant of 

mortality.  

For the second contribution of this paper, I incorporate the effects of humidity when 

projecting the impact of climate change on mortality rates in the United States. My study builds 

on recent research by Deschênes and Greenstone (2007) (hereafter DG) who examine the impact 

of changing temperatures on mortality rates in the United States. In short, they present 

compelling evidence that the temperature-mortality relationship is U-shaped.5 Using climate-

change predictions from the Hadley CM3 climate model, DG project that mortality rates may 

                                                 
3 See Deschênes and Greenstone (2007) for a comprehensive review of the epidemiological studies that examine the 
health effects of temperature. 
4 Braga et al. (2002) and Schwartz et al. (2004) both use data from only 12 metropolitan areas, for example. 
5 DG find that both “cold” temperatures (e.g., below 40°F) and “hot” temperatures (e.g., above 80°F) cause 
significant increases in mortality. Deschênes and Moretti (2007) also explore the effects of temperature on mortality 
rates in the United States. Unlike DG, the focus of Deschênes and Moretti is to estimate the inter-temporal mortality 

displacement effects from exposure to hot or cold temperatures. They find that cold temperatures (e.g., below 30°F) 

have a large cumulative effect on mortality rates but hot temperatures (e.g., above 80°F) exhibit more of a culling 
effect.  
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increase by about 1.7 percent (at most) in the coming century.6 However, DG’s results are 

potentially biased because they fail to control for humidity (due to data constraints). My paper 

shows that the bias from omitting humidity is small but economically meaningful on aggregate 

for the United States. In addition, failing to account for humidity considerably biases estimates of 

the distributional impacts of climate change within the United States. 

The mortality data and the weather data used in my analysis were constructed from the 

National Center for Health Statistics' Multiple Causes of Death (MCOD) files and the National 

Climatic Data Center's Global Summary of the Day (GSOD) files, respectively. The MCOD files 

have mortality counts for the entire United States, and are available from 1968 through 2002. I 

construct state-by-month mortality rates using mortality counts from the MCOD files and 

population estimates from the National Cancer Institute. The GSOD files are organized by 

weather station and day. I aggregate the station-day data to the state-month level using the state 

population within 50 miles of each weather station as weights. For my study, the key weather 

variables of interest are:  daily mean temperature and daily specific humidity.7  

There are three main empirical challenges with identifying the causal effects of 

temperature and humidity on mortality.8 First, individuals select their area of residence based on 

a host of factors, which include their socioeconomic status, underlying health status, and their 

preferences for certain climates. To the extent that these factors are correlated, this sorting is 

likely to bias estimates. Second, weather may affect the inter-temporal distribution of deaths in 

the short term, while having little substantive effect on the mortality rate over a longer time 

                                                 
6 DG also evaluate the effects of climate change using the CCSM 3 climate model. They find that mortality rates 
only increase by 0.5 percent using the CCSM 3 climate model. I cannot use the CCSM 3 climate model since daily 
humidity is not a reported variable. 
7 As I discuss below, I use “specific humidity”, as opposed to “relative humidity”, because the former is not 
mechanically determined by the temperature. 
8 These limitations are eloquently discussed in DG. 
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horizon. This could potentially lead to overstating the adverse effects of climate change on 

human health conditions given hot weather is more likely to exhibit a “harvesting” phenomenon 

(Deschênes and Moretti, 2007). Third, temperature and humidity likely have nonlinear effects on 

mortality. Failing to account for these nonlinear effects may produce biased estimates in the 

context of predicting the consequences of increasing temperatures and humidity levels. 

My research design addresses these three concerns in the following ways: First, I include 

a robust set of fixed effects in order to disentangle the causal effects of weather from other 

factors. I have unrestricted state-by-calendar-month fixed effects to account for the possibility 

that individuals with unobservable predispositions to certain climates select into different states. 

I include state-by-calendar-month time trends and state-by-year fixed effects in order to address 

the possibility that there are unobservable state-level compositional changes that are also 

correlated with state-specific climatic trends. Second, my specification allows temperature and 

humidity to affect mortality rates for up to 30 days in order to account for potential inter-

temporal effects. Third, I allow the mortality effects of temperature and humidity to vary by 10°F 

bins and 2 grams-of-water-vapor bins, respectively.9  

For my energy consumption analysis, I use state-year per capita energy consumption data 

from the Energy Information Administration (c. 1968-2002). I rely on a qualitatively similar 

identification strategy to the one outlined above, excepting the fact that the energy data is at the 

state-year level (as opposed to state-month level). That is, I include year fixed effects, state fixed 

effects, and state-specific linear time trends. As such, the results from my energy consumption 

analysis can also be interpreted as causal since the identifying variation comes from plausibly 

exogenous within-state variation in temperature and humidity levels.  

                                                 
9 In addition, I estimate a model with temperature-humidity interaction terms in order to test whether high-humidity 
levels exacerbate the adverse effects of hot temperatures via heat stress.  
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It is important to highlight the limitations with using my research design to measure the 

impacts of climate change. On one hand, I may overstate the direct effects because my estimates 

are derived from unanticipated weather shocks. Since climate change is anticipated, individuals 

may be able to mitigate the adverse health effects of temperature and humidity changes by 

adapting health-saving technologies (e.g., dehumidifiers) or by migrating to more favorable 

climates (DG).10 On the other hand, like DG, I potentially understate the health impacts of 

climate change because I ignore morbidity and weather-related natural disasters (e.g., 

hurricanes).11  

There are three important results from my mortality analyses: First, both temperature and 

humidity are important determinants of mortality. Specifically, the temperature-mortality 

relationship and the humidity-mortality relationship are both U-shaped and large in magnitude at 

the extremes.12 Second, my results indicate that temperature and humidity have a large impact on 

cardiovascular-related mortalities and respiratory-related mortalities. Third, temperature and 

humidity mostly impact mortality rates for individuals over the age of 45.  

Using climate-change predictions from the “business-as-usual” scenario (A1F1) in the 

Hadley CM3 climate model, I project that mortality rates are likely to increase by about 1.3 

percent, or an increase of 34 thousand deaths, in the United States by the end of the 21st century. 

Assuming the statistical value of one life is $7 million, my results suggest that the United States 

may have $235 billion added costs in terms of additional mortalities. I also find the per capita 

energy consumption is likely to increase by 4.8 percent, or 9.9 quads of BTU, which would raise 

                                                 
10 Any conscious choice to “adapt” a new technology would necessarily be less costly than the alternative (DG). 
Also, epidemiological evidence suggests that the human physiology is itself capably of adapting to different climates 
(Pan et al., 1995). 
11 In addition, predicting the indirect health impacts (e.g., via agriculture output or weather-related natural disasters) 
is outside the scope of this research. For example, Deschênes and Greenstone (2007b) and Schlenker and Roberts 
(2008) estimate the effects of climate change on agriculture output in the United States.  
12 That is, mortality rates decrease as the temperature (humidity) increases until some threshold temperature 
(humidity) level is reached; after which, mortality rates increase as the temperature (humidity) increases.  
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the health-related costs of climate change an additional $75 billion to a total of $310 billion. 

Without controlling for humidity, I only estimate a 0.9 percent increase in mortality (or 24 

thousand deaths) and a 2.4 percent increase in energy consumption (or 5.0 quads of BTU).13 

Although statistically insignificant, the bias is economically meaningful: without humidity the 

welfare costs of climate change are underestimated by $101 billion. Compared to DG, I find 

much larger effects of climate change on energy consumption, but qualitatively similar effects on 

mortality when accounting for humidity. 

Importantly, omitting humidity causes significant biases when evaluating the 

distributional impacts of climate change. The costs of climate change are overestimated in areas 

with cold and dry climates (e.g., the Northeast), but underestimated in areas with hot and humid 

climates (e.g., the South). This fact suggests that the adverse effects of climate change are going 

to be borne even more disproportionately by economically disadvantaged areas of the United 

States than previously anticipated. Consequently, incorporating the effects of humidity has 

important implications for devising both efficient and equitable climate-change policies. As a 

simple thought experiment, I also show that accounting for humidity is potentially even more 

important for understanding the distributional impacts of climate change worldwide. 

 On the whole, my results suggest that humidity, like temperature, is an important 

determinant of human health and welfare. To the extent possible, future research should account 

for increasing humidity levels when evaluating the effects of climate change.  

                                                 
13 Compared to DG, I find that climate change has a slightly smaller effect (i.e., around 0.9 percent increase) on 
mortality when I only control for temperature. This can be explained by the fact that I use monthly-level variation 
while DG rely on annual-level variation. Annual variation in temperature omits the impact of any winter weather 
that occurs in the previous calendar year or the possibility that the winter weather at the end of the calendar year 
may affect mortality rates into the next calendar year. In one robustness check, DG show that controlling for the 
previous year’s weather diminishes their estimates of the impacts of climate change to 0.9 percent, which is identical 
to my estimate. Note that I favor monthly-level variation to mitigate mis-measuring exposure to adverse winter 
weather conditions. When I do not control for humidity, my energy-consumption projections are identical to DG 
(i.e., a 5 quad increase). 
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2 Understanding Humidity 

In this section, I discuss the physical aspects of humidity that are relevant to my 

identification strategy. Specifically, I explain: (a) the preferred measures of humidity, and (b) the 

physical determinants of humidity. 

 

2.1 Measures of Humidity 

Humidity is a measure of the amount of water vapor in the air. The most commonly used 

measures are: dew point, water vapor pressure, specific humidity, and relative humidity.14 These 

four measures are highly correlated when controlling for temperature because of their physical 

and mechanical relationships. As such, models that include more than one measure of humidity 

risk identification off functional form assumptions and/or measurement error. I opt to include 

specific humidity in my core specification over the other measures for two reasons: first, specific 

humidity is not mechanically determined by temperature (unlike relative humidity).15 Second, 

specific humidity is easy to conceptualize; i.e., specific humidity is defined as the number of 

grams of water vapor in a one-kilogram parcel of air (or “g/kg”).16 For simplicity, I use 

“humidity” interchangeably with “specific humidity” for the remainder of the paper. 

                                                 
14 Dew point is the temperature at which the water vapor in the air condenses, water vapor pressure is the 
atmospheric pressure exerted by the water vapor in the air, specific humidity is the number of grams of water vapor 
in a one-kilogram parcel of air, and relative humidity is the actual vapor pressure divided by the saturation vapor 
pressure. Note that there is a subtle difference between specific humidity and absolute humidity. That is, absolute 
humidity is the number of grams of water vapor per one cubic meter (volume) of air. Absolute humidity is not a 
commonly used because the volume of a parcel of air changes when the surrounding air pressure changes, and not 
necessarily when there is an increase in water vapor content (Ahrens, 2009). 
15 The saturation vapor pressure, which is the pressure at which water vapor in the air condenses, is an increasing 
function of temperature. Since the saturation vapor pressure is the denominator in the equation for determining 
relative humidity, any measurement error in temperature is negatively correlated with measurement error in relative 
humidity.  
16 These arguments for choosing specific humidity notwithstanding, my results are qualitatively similar when using 
dew point or water vapor pressure. I find no strong relationship between relative humidity and mortality after 
controlling for temperature. Results available upon request.  
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2.2 Physical Determinants of Humidity 

In order to better understand the identifying variation in my model, this sub-section 

briefly discusses the physical determinants of humidity. Water molecules on the earth’s surface 

accelerate (as do other molecules) as the air temperature rises. As a result, these accelerated 

water molecules are more likely to “break free” from other water molecules and become water 

vapor (Ahrens, 2009). Conversely, as the temperature cools water vapor is more likely to 

condense and turn to its liquid or solid state. In addition to warmer temperatures, humidity levels 

are higher when there is more surface water because the stock of potentially evaporable water 

molecules is greater.17 

In sum, humidity is an increasing function of the temperature and the stock of surface 

water.18 To illustrate these relationships, Figure 1 shows the raw correlation between daily mean 

temperature and daily mean humidity in New Orleans and Phoenix, respectively, in 2002. As 

hypothesized, there is a positive relationship between temperature and humidity in both cities. 

Conditional on temperature, New Orleans has higher humidity levels than Phoenix since New 

Orleans is mostly surrounded by water and Phoenix is located in the desert. 

The fact that temperature and humidity are physically related has two important 

implications for identification. First, models that estimate the effect of temperature on mortality 

without controlling for humidity are potentially biased. The degree of the bias is a function of 

differences in the temperature-humidity gradient across states and over time.  

Second, models that control for both temperature and humidity are identified by cross-

sectional differences in the temperature-humidity gradient and changes in the temperature-

                                                 
17 Higher humidity levels in themselves may cause warmer temperatures because water vapor in the air traps 
infrared energy on the surface (Ahrens, 2009). This is sometimes referred to as a “feedback mechanism.” 
18 Vegetation can also affect humidity levels through transpiration (Ahrens, 2009). 
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humidity gradient over time.19 As such, studies with small samples sizes, like many previous 

epidemiological studies, are likely to have little identifying variation from which to distinguish 

the effects of humidity from temperature. (For example, Braga et al. (2002) rely on mortality 

data from 12 metropolitan counties for the years 1986 through 1993.) Note that my study 

overcomes this challenge by using 35 years of weather and mortality data for every state in the 

United States.     

 

3 The Relationship Between Temperature, Humidity, and Mortality 

In this section I briefly review the mechanisms through which temperature and humidity 

are thought to affect the human physiology.20 In addition, I discuss how these mechanisms affect 

my choice of identification strategy. 

Extreme temperatures are dangerous because they place stress on the cardiovascular, 

respiratory, and cerebrovascular systems. Specifically, an individual’s blood pressure, blood 

viscosity, and heart rate adjust as the temperature deviates from “comfortable” conditions 

(Keatinge et al., 1984). Breathing cold air in itself can lead to bronchial constriction (Martens, 

1998). In general, previous studies have noted that cold temperatures have a larger impact on 

mortality rates than hot temperatures. Furthermore, hot temperatures are more likely to affect the 

inter-temporal distribution of mortality, or to “harvest”, than cold temperatures (Deschênes and 

Moretti, 2007). 

Humidity can affect the human physiology through a variety of mechanisms. On one 

hand, low-humidity levels can also lead to dehydration as well as promote the spread of airborne 

                                                 
19 To ensure that the temperature-humidity gradient is not itself correlated with important omitted variables, I run 
estimate my model on the unemployment rate. Results not reported. 
20 In this section, I do not distinguish between specific humidity or relative humidity.  After conditioning on 
temperature, changes in specific humidity and changes in relative humidity are conceptually equivalent. 
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diseases and pollutants (Lowen et al., 2007; Xie et al., 2007). On the other hand, high-humidity 

levels exacerbate the effects of heat stress because humidity impairs the body’s ability to sweat 

and cool itself (Ahrens, 2009). High-humidity levels can affect respiratory health since they 

promote the spread of bacteria, fungi, and dust mites (Baughman and Erans, 1996). Despite these 

hypothesized mechanisms, the impacts of humidity on mortality have not been well established 

in the epidemiological literature (Schwartz et al., 2004). 

In sum, the temperature-mortality relationship and the humidity-mortality relationship are 

both most likely nonlinear. As such, I use an empirical specification that allows the mortality 

effects to vary depending on whether the temperature or humidity falls in one of several 10°F or 

two-grams-of-water-vapor bins, respectively. In addition, I include controls for "dangerous" 

temperature-humidity combinations in several robustness checks to test whether high-humidity 

levels significantly exacerbate the adverse effects of high temperatures.  

 

4 Data 

I use mortality data from the National Center for Health Statistics' Multiple Causes of 

Death (MCOD) files and weather data from the National Climatic Data Center's Global 

Summary of the Day (GSOD) files in my analysis. These data cover the period between 1968 

and 2002 and are organized into 21,420 state-month cells (i.e., 50 states plus the District of 

Columbia times 420 months). I also match the NCDC data to state-year energy consumption data 

from the Energy Information Administration (EIA). The EIA data have 1,785 state-year 

observations (i.e., 50 states plus the District of Columbia times 35 years).  

 

4.1 Multiple Causes of Death 
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The MCOD data files are full censuses of the deaths that occurred in the United States.21 

I first construct all-cause and cause-specific mortality counts by state of residence and month of 

death.22 I then calculate state-by-month mortality rates per 100,000 inhabitants using state-year 

population estimates from the National Cancer Institute.23 For a separate set of analyses, I also 

construct state-month mortality rates by different age groups (i.e., under 1, 1-4, 5-14, 15-24, 25-

34, 35-44, 45-54, 55-64, 65-74, 75-84, and over 85 years of age).  

It is important to note that I aggregate the mortality data to the state level, as opposed to 

the county level, due to data constraints. Subsequent to 1989, counties with fewer than 100,000 

inhabitants are not identified in the public-use MCOD data. Using state-level variation does not 

substantively affect my estimates since weather conditions are positively correlated within 

states.24 Nonetheless, I present county-level estimates for the set of publicly identified counties 

as a check on my core identification strategy.25 

 

4.2 Global Summary of the Day 

The Global Summary of the Day (GSOD) files report detailed weather information by 

weather station and day and are available every year that the MCOD data is available (i.e. 1968-

2002). Weather variables in the GSOD files include: mean temperature, dew point, station 

pressure, sea level pressure, and total precipitation, among other things. Although not reported in 

                                                 
21 The 1972 MCOD file, which is a 50 percent sample, is the only exception. 
22 Information on day of death is only available from 1972 through 1988. Although information on state of 
occurrence is available, I organize the mortality data by state of residence because the former is potentially 
endogenous. 
23 The NCI population data is available from 1969 onwards. For simplicity, I assume that the state populations in 
1968 are identical to 1969. 
24 Clustering the standard errors at the state level is arguably necessary because unobservable mortality shocks are 
likely positively correlated across counties that are within the same state. Clustering at the state level wipes out some 
of the potential gains in precision that county-level estimates might provide. 
25 These are the 389 most populated counties in the United States. These counties accounted for close to 70 percent 
of the entire United States population in 2000. 
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the GSOD files, I calculate specific humidity using a standard meteorological formula and 

information on dew point and air pressure.26 Also, the GSOD files include an unbalanced panel 

of weather stations; I use all stations that report weather information each year to make the most 

of the available data.27  From the GSOD station-day data, I construct aggregated state-month 

weather variables using inverse-distance weights of the state population within 50 miles of each 

weather station.28 

 

4.3 Climate change predictions data 

 I use climate change predictions from the United Kingdom Meteorological Office's 

Hadley Centre. Following DG, I rely on the A1F1 scenario predictions of the Hadley CM3 

climate model for the years 2070 through 2099. The Hadley CM3 model predictions are widely 

used by climate-change researchers.29 The A1F1 scenario assumes there is little or no additional 

effort (e.g., policy initiatives) to mitigate man-made pollution and is, therefore, a “business-as-

usual” scenario. The Hadley CM3 model reports daily mean temperature, daily specific 

humidity, and total precipitation at several points across the United States that are separated by 

                                                 
26 Specific humidity is a function of the dew point and station pressure (NOAA, 2008a). Note that station pressure is 
not available for many observations. When this occurs, I use the sea level pressure adjusted to the weather station’s 
elevation using a standard meteorological formula (NOAA, 2008b). When neither station nor sea level pressure is 
available a weather station, I use the average sea-level pressure for the entire state adjusted to the station’s elevation. 
When dew point is missing, however, I drop the station-day observation from my sample. If dew point is missing 
more than 50 percent of the year, I drop all observations for that station-year. Also, prior to 1973 relatively few 
weather stations recorded total precipitation, although these stations did record whether there was any rainfall. I 
assign the annual-average daily precipitation (conditional on there being some precipitation) to those station-days 
that report having rainfall, but are missing the total amount of precipitation. 
27 For example, there were approximately 550 reporting stations in 1968, 1,130 in 1978, 1,330 in 1998, and 1,640 in 
2002. 
28 The construction of the state-month weather variables is discussed more formally in the methodology section 
below. 
29 See IPCC (2007), Schlenker and Roberts (2008), and Stern (2008), for example. 
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2.5° latitude and 3.75° longitude grids. I create state-level variables from the Hadley CM3 A1F1 

predictions using inverse-distance weights of the population (in 2000) within each grid section.30 

 

4.4 Energy consumption data 

 The EIA reports total energy consumption in British Thermal Units (BTU) for the 

residential sector by state and year between 1968 and 2002. I create per capita energy 

consumption data using population estimates provided by the EIA. Following DG, I focus on the 

residential sector because the elasticity of energy consumption with respect to the weather is 

likely to be greater than in other sectors. 

 

5 Estimation Strategy 

5.1 The Reduced-Form Model 

I estimate the effects of temperature and humidity on mortality via ordinary-least-squares 

using the following model:  

�1� MORT	
� � 
 β� TEMP�	
�
�

� 
 ��� HUMID��	
�
��

�  ∂ · X	
� � μ
� � φ	�

� δ	� · YEAR � ρ	
 � e	
� , 
where MORT is the monthly mortality rate (per 100,000 inhabitants) in state k, year y, and 

calendar month m; TEMP is the set of temperature variables that indicate the fraction of days 

state k is exposed to mean temperatures in a given 10°F bin b (e.g. 50-60°F); HUMID is the set 

of humidity variables that indicate the fraction of days state k is exposed to mean humidity levels 

in a given 2-grams-of-water-vapor bin b' (e.g. 2-4 g/kg); X is a vector of controls for 

                                                 
30 The population data comes from the U.S. Census Bureau.  
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precipitation31; µ is a set of unrestricted time effects; YEAR is a set of unrestricted state by 

calendar month fixed effects; δ is a set of unrestricted state by calendar month fixed effects 

interacted with a linear time trend; ρ is a set of unrestricted state by year fixed effects; and, e is 

an error term.32 I cluster the standard errors on state of residence to account for the possibility 

that e is correlated within states.33  

The inclusion of the state-by-calendar-month fixed effects accounts for any fixed 

differences between states and fixed seasonal differences within states that may be correlated 

with unobservable factors (e.g., seasonal income). Adding state-by-calendar-month linear time 

trends allows me to control for the possibility that within-state compositional changes (e.g., as a 

result of migration) are correlated with gradual climatic changes. Likewise, the state-by-year 

fixed effects control for unobservable compositional changes with more flexibility.  

The TEMP and HUMID variables are derived by aggregating a station-day indicator 

variable to the state-month level using inverse distance weights of the population within 50 miles 

of each weather station. For example, I define TEMP=40-50°F, or exposure to temperatures 

between 40 and 50°F, as follows:  

�2� TEMP �	
� � 
 %&
 %
 DUM�'	
()* · ω'	

'

+
,-

*./
& /30+ /DAYS
� ,

(
 

where DUM is an indicator variable set to one if the daily mean temperature on day d minus l of 

year y at station i is between 40 and 50°F; ω is the inverse-distance weight of the population in 

                                                 
31 I control for the fraction of days state k is exposed to precipitation in a given 0.2-inch bin, for precipitation levels 
between 0.0 and 1.0 inches per day. Fraction of days with precipitation levels above 1.0 inch is also included as a 
control. In one specification, I also control for the heat index to account for dangerous temperature-humidity 
combinations. 
32 As a robustness check (not reported), I exclude the state-by-year fixed effects and the state-month linear time 
trends.  
33 For example, public health resources, which also affect mortality rates, are potentially correlated over time within 
states. 
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state k residing within 50 miles of station i in year y;34 and DAYS is the number of days in 

calendar month m of year y (i.e. 28, 29, 30, or 31).  The other temperature and humidity 

variables are constructed similarly to TEMP=40-50°F using equation (2). 

Note that I control for temperature and humidity levels for 30 days prior to the month of 

death to mitigate any inter-temporal mortality effects. I use a 30-day lag because previous studies 

find that weather may have a harvesting effect for up to 30 days (Deschênes and Moretti, 2007). 

As a robustness check, I show that temperature and humidity have little effect on the cancer 

death rate, or deaths that would have occurred in the short-term regardless of the weather. Also, I 

vary the lag to 15 and 60 days in two separate specification checks (not reported). 

The various temperature and humidity bins allow for the possibility that the temperature-

mortality and the humidity-mortality relationships are non-linear. For example, previous 

researchers have noted U-shaped, V-shaped, and J-shaped relationships between temperature and 

mortality (Pan et al., 1995; Schwartz et al., 2004). The optimal number of bins requires that I 

balance model flexibility and statistical precision. With this in mind, I divide TEMP into 10°F 

bins, with less than 0°F and greater than 90°F at the extremes (i.e., <0, 0-10, 10-20, 20-30, 30-

40, 40-50, 50-60, 60-70, 70-80, 80-90, and >90°F). HUMID is divided into two-grams-of-water-

vapor bins, with 0 to 2 and greater than 18 grams of water vapor at the extremes (i.e., 0-2, 2-4, 4-

6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, >18 grams of water vapor per one kilogram air. 

In equation (1), omitted weather dummy-bins are TEMP = 60-70°F and HUMID = 8-10 

g/kg. By dropping these particular variables, the remaining temperature and humidity parameters 

can be thought of as deviations from more “comfortable” conditions. 

 

                                                 
34 The weighting scheme follows the approach outlined in Hanigan et al. (2006). I use the county population and the 
geographic centroid of the county as of 2000 (U.S. Census Bureau).  
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5.2 Effects on energy consumption 

 Using EIA data, I estimate the effects of temperature and humidity on per capita energy 

consumption in the residential sector. The unit of observation in the EIA data is at the state-year 

level so I must rely on a model different than equation (1). As such, I estimate the following 

reduced-form model: 

�3� C	
 � ∑ β� TEMP�	
� � ∑ ��� HUMID��	
�� �  γ · X � μ
 � δ	 · YEAR � e	
� , 
where C is the per capita energy consumption in the residential sector in state k and year y; 

TEMP, HUMID, and X are as in equation (2) except they are aggregated to the year level; year 

fixed effects (μ) control for macro-level shocks; and state-specific linear time trends (δ	 · YEAR) 

are included to account for the possibility that changes in energy consumption are spuriously 

correlated with state-specific climatic trends.35 

 

6 Results: the effects of temperature and humidity on mortality 

6.1 Summary Statistics 

Figure 2 presents population-weighted histograms of the daily temperature and daily 

humidity data, respectively, for the years 1968 through 2002. In general, both the temperature 

and humidity distributions are unimodal. However, temperature appears to be more left-skewed 

while humidity is more right-skewed. The fact that there are relatively few observations at the 

tails of the distributions suggests the effects of extreme temperatures and extreme humidity 

levels are likely to be less precisely estimated.  

Table 1 provides summary statistics by region of residence (i.e., Northeast, Midwest, 

South, and West). In general, the South and the West are relatively warmer than the Northeast 

                                                 
35 My results are robust to the inclusion of state-specific quadratic trends (not reported).  
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and the Midwest. Also, the South has significantly more high-humidity days than the other three 

regions. The Northeast, Midwest, and the South have qualitatively similar mortality rates (i.e., 

around 75 deaths per 100,000 inhabitants, while the West has the lowest monthly mortality rate 

among the four regions (i.e., around 60 deaths per 100,000 inhabitants).  

Figure 3 shows that the mortality rate is inversely related to the average monthly 

temperature and average monthly humidity levels for the whole of my sample. For example, 

average temperature and humidity levels both peak in August, while the monthly mortality rate 

peaks in January. Figure 3 provides suggestive evidence that winter weather conditions (e.g., 

cold and dry weather) are more dangerous to the human physiology than summer weather 

conditions (e.g., hot and humid weather). However, inferring causality from these seasonal 

relationships is unsound because there may be fixed differences across seasons (e.g., nutritional 

intake, income) that vary by state. Importantly, my model abstracts from any variation in the 

mortality rate that may be spuriously correlated with unobservable seasonal factors that are fixed 

within each state. As such, the results of the regressions below can be interpreted as causal.  

 

6.2 Main Results 

As a reference point, I start by regressing the vector of temperature variables (TEMP) on 

the monthly mortality rates without controlling for humidity. As shown in column (1) of Table 2, 

both temperatures below 50ºF and temperatures above 90°F cause significant increases in the 

mortality rate (relative to temperatures between 60 and 70ºF). For example, exposure to one 

additional month with temperatures between 30 and 40ºF causes an additional 12.66 deaths per 

100,000 inhabitants. Exposure to one month with temperatures above 90 ºF causes an additional 

9.94 deaths per 100,000 inhabitants. These effects are large in relation to the average monthly 
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mortality rate of 73.0. Importantly, my column (1) estimates are nearly identical to DG’s 

estimates of the temperature-mortality relationship. 

Without controlling for temperature, the humidity-mortality relationship follows a similar 

pattern to the temperature-mortality estimates. That is, column (2) shows that there is mostly a 

negative correlation between humidity and mortality rates at low-levels of humidity. For 

example, exposure to one month with humidity levels between 2 and 4 g/kg causes 9.87 

additional deaths per 100,000 inhabitants (relative to 8-10 g/kg). Also, exposure to high humidity 

levels (e.g., above 18 g/kg) predicts modestly higher mortality rates.  

To disentangle the effects of temperature and the effects of humidity on mortality, 

column (3) includes both TEMP and HUMID as regressors. There are three key findings worth 

highlighting from the column (3) estimates:  

First, the coefficients on low temperatures and low-humidity levels are significantly 

smaller in magnitude than their respective column (1) and column (2) counterparts. For example, 

the coefficient on TEMP=30-40 and the coefficient on HUMID=2-4 are both about 40 percent 

smaller. Thus, failure to control for humidity overstates the independent effect of temperature, 

and vice versa. 

Second, despite their diminished magnitude, both cold temperatures and low-humidity 

levels are still important determinants of mortality. That is, the coefficient estimates are still 

positive, large, and statistically significant at low temperatures and low-humidity levels. For 

example, one additional month with humidity levels between 2 and 4 g/kg causes an additional 

5.52 deaths per 100,000 inhabitants (relative to 8-10 g/kg). 



19 
 

Third, the effect of temperatures above 90ºF is still positive, statistically significant, and 

large in magnitude. The coefficient on humidity levels above 18 g/kg is still positive, moderately 

large, and statistically significant at conventional levels. 

To provide for easier interpretation, I translate the coefficients in column (3) into 

percentage changes in the annual mortality rate from exposure to one additional day per year in a 

given temperature or humidity bin. These estimates, which are presented in Figure 4, show that 

one additional day per year between 30 and 40ºF causes the annual mortality rate to increase by 

approximately 0.03 percent (relative to 60-70ºF). As Figure 4 illustrates, the temperature-

mortality relationship and the humidity-mortality relationship are both roughly U-shaped. That 

is, mortality rates decrease as the temperature (humidity) increases until some threshold 

temperature (humidity) level is reached; after which, mortality rates increase as the temperature 

(humidity) increases. My estimates imply that the “ideal” temperature is between 70 and 80ºF 

and the “ideal” humidity level is between 10 and 12 g/kg.36 

 

6.3 By Cause of Death 

Figure 5 analyzes the effects of temperature and humidity on four of the most prominent 

causes of death: cardiovascular disease, respiratory illness, cancer, and motor vehicle accidents.37 

Except for temperatures below 30ºF, Figure 5 shows that the temperature-mortality relationship 

and the humidity-mortality relationship for cardiovascular deaths (Panel A) and respiratory 

deaths (Panel B) are both roughly U-shaped. In particular, low-humidity levels have a large 

effect on deaths from respiratory disease. I find that temperature and humidity have little effect 

                                                 
36 Note that my research design produces local-average-treatment-effects. As such, my estimates provide only 
suggestive evidence regarding the benefits of being consistently (and expectedly) exposed to certain weather 
conditions. 
37 These four causes represent about 80 percent of all causes of death. Also, this analysis categorizes death by their 
“primary” cause so the categories are mutually exclusive.  
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on deaths from cancer (Panel C), which suggests that my identification strategy has effectively 

mitigated potential biases from inter-temporal displacement effects (Deschênes and Moretti, 

2007). Also, I find that there is a positive relationship between temperature, but no discernable 

relationship between humidity, and deaths from motor vehicle accident (Panel D).  

 

6.4 By Age Group 

Table 3 estimates my core model on 11 separate age groups (see Appendix Table 1). In 

general, people over 45 years of age are most affected by temperature and humidity changes. 

One notable exception to this is that infant mortality rates increase significantly when the 

temperature is above 90°F. However, infant mortality rates are not particularly sensitive to 

changes in humidity levels. Nonetheless, the temperature-mortality and humidity-mortality 

relationships are consistent across most of the age groups. As such, my core model, which pools 

all age groups, is not affected by age-specific compositional changes across states. 

 

6.5 Robustness Checks 

As a check on my state-month model, I estimate the effects of exposure to temperature 

and humidity using data at the county-month level. Due to data constraints in the MCOD files, I 

restrict my county-month model to counties with over 100,000 inhabitants between 1968 and 

2002. Figure 6 illustrates that both models produce nearly identical estimates except for the 

effects of temperatures above 90°F, which are smaller in magnitude in the county model. Also, I 

divide my sample into two groups of states based on the number of days per year with 

temperatures above 65°F. Figure 7 shows that the results are qualitatively similar for the group of 

"hot states" and the group of "cold states". 
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To account for the possibility that humidity exacerbates the effects of heat stress, I 

include controls for days with a heat index between 70 and 80, between 80 and 90, and above 

90.38 (See Appendix Table 1.) Also, I include controls for days with temperatures above 70°F 

and 80°F interacted with the day’s humidity level, respectively.39 (See Appendix Table 1.) In 

general, there is limited evidence to support the inclusion of these controls. As such, temperature 

and humidity enter as independent effects in my core model for simplicity. 

I verify that temperature and humidity are not correlated with the state-month 

unemployment rate to ensure that my model is not spuriously identifying the effects of some 

omitted variable.40 Also, my results are qualitatively similar when I use the log of the monthly 

mortality rate as my dependent variable. (Results are available upon request.) 

I examine the sensitivity of my results to varying the set of fixed effects and the days-lag 

in equation (2) to 15 days and 60 days. Although there is loss of precision, my results are 

qualitatively similar when I use 5°F bins and one-gram-of-water-vapor bins. (Results are 

available upon request.) 

 

7 Results: The effects of temperature and humidity on energy consumption 

My energy estimates, which are presented in Figure 8, show a roughly U-shaped 

temperature-energy consumption relationship. For example, one additional day per year with 

temperatures between 30 and 40°F causes annual per capita energy consumption in the 

residential sector to increase by 0.2 percent (relative to temperatures between 60 and 70°F). One 

                                                 
38 The NOAA "cautions" people to monitor their health once the heat index is above 90. The heat index is equal to 

the temperature for all temperatures below 70°F (Steadman, 1979). 
39 In these specification checks, humidity enters in as a continuous variable. I have tried allowing for non-linearities 
in humidity; the results are qualitatively similar.  
40 These unemployment rates come from the BLS and are only available subsequent to 1977. 
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additional day per year with temperatures above 90°F causes energy consumption to increase by 

0.1 percent.  

Energy consumption increases at high-humidity levels. However, there is little or no 

change in energy consumption at low-humidity levels. For example, one additional day per year 

with humidity levels between 14 and 16 g/kg causes annual energy consumption to increase by 

almost 0.1 percent (relative to 8-10 g/kg). One additional day per year with humidity levels 

between 0 and 2 g/kg has no discernable effect on energy consumption.  

On the surface, the unresponsiveness of energy consumption to low-humidity levels can be 

explained by the fact that relatively few households in the United States own humidifiers. 

According to the EIA, only 15 percent of all households had humidifiers in 2001 (EIA, 2009). 

Conversely, the increase in energy consumption at high-humidity levels is likely due to increased 

use of air conditioners, which 76 percent of all households posses (EIA, 2009).41  

As an important aside, the fact that energy consumption is unresponsive to low-humidity 

levels has important implications for improving public-health conditions in the United States. 

According to my core mortality estimates (Figure 4), humidity levels below 6 g/kg cause a large 

increase in mortality rates. However, there is little apparent self-protection, in the form of 

increased energy consumption, from these dangerous humidity levels. To the extent that 

humidifiers (or other technologies) can mitigate the adverse health effects of low-humidity 

levels, then policy intervention may have significant economic returns. 

 

8 The Effects of Climate Change on Mortality and Energy Consumption 

                                                 
41 As Steadman (1979) notes, high humidity levels raise the “apparent temperature”, which can be mitigated by 
reducing either: (a) the actual temperature (e.g., via air conditioning), or (b) the humidity level (e.g., via 
dehumidifiers). A more thorough examination of the factors that explain why energy consumption increases at high- 
but not low-humidity levels is outside the scope of this paper. 
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8.1 Welfare valuations 

The A1F1 scenario of the Hadley CM3 model predicts significantly more hot and humid 

weather by the end of the 21st century. Figure 9 illustrates the difference in the daily temperature 

and daily humidity distributions between the GSOD sample period (c. 1968-2002) and the 

Hadley CM3 sample period (c. 2070-2099). For example, the United States will experience 

approximately 5 fewer days between 30 and 40 ºF and 40 more days over 90ºF per year on 

average by the end of the 21st century. And, there will be approximately 10 fewer days with 

humidity levels below 2 g/kg and nearly 50 more days with humidity levels above 18 g/kg per 

year on average.  

Panel A of Table 3 summarizes my welfare valuations of climate change's impact on 

mortality and energy consumption. Coupled with my core temperature-mortality and humidity-

mortality estimates (Figure 4), I project that mortality rates are likely to increase approximately 

1.3 percent (or 34,000 deaths) by the end of the 21st century (c. 2070-2099).42 Using a statistical 

value of a life of $7 million (EPA (2000a), EPA (2000b)), my estimates imply that climate 

change will cost the United States approximately $235 billion dollars in terms of more fatalities. 

Ignoring the uncertainty with the climate-change predictions themselves, my estimate is 

statistically significant from zero at the five-percent level. 

Furthermore, my estimates imply that there will be a 4.8 percent increase in energy 

consumption in the residential sector. (Or, an increase of 9.9 quadrillion BTUs.) Assuming a 

price per quadrillion BTU of $7.6 million (in 2006$), as done by DG, this translates into an 

additional $75 billion in energy expenditure per year.  However, my energy estimate is not 

statistically significant from zero at conventional levels. 

                                                 
42 I hold population constant at 300 million for simplicity. 
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Together, the health-related costs of climate change (in terms of mortality and energy 

consumption) are $310 billion dollars per year. Put another way, this translates into a loss of 

about $1,000 per capita per year ($310 billion divided by approximately 300 million inhabitants). 

This is a sizable cost relative to the United States' baseline income per capita of around $35 

thousand (BEA). 

 

8.2 Discussion: Importance of controlling for humidity 

Excluding humidity biases estimates towards understating the costs of climate change. 

With my own model, excluding humidity causes me to estimate only a 0.9 percent increase in 

mortality rates and a 2.4 percent increase in energy consumption, as opposed to a 1.3 increase in 

mortality and 4.8 percent increase in energy consumption in my core model (see Panel B of 

Table 3). A model that omits humidity finds only a 2.5 percent increase, as opposed to 3.9 

percent increase, in energy consumption. Although small and statistically insignificant at 

conventional levels, the bias is economically meaningful: omitting humidity underestimates the 

welfare costs of climate change by about $101 billion.  

Incorporating humidity has particularly important implications for evaluating the 

distributional impacts of climate change. Table 4 shows that the adverse impacts of climate 

change, in terms of mortalities, are concentrated in the south of the United States, where the 

climate is hotter and more humid on average. Interestingly, northern areas of the United States 

are expected to see a decrease in mortality rates.43 More importantly for the present discussion, 

omitting humidity causes me to considerably underestimate the costs of climate change in the 

                                                 
43 This result suggests that the benefits of less-extreme winter weather will more than compensate for the more-
extreme summer weather in the North. 
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South but overestimate the benefits of climate change in the North.44 For example, the West 

South Central Division (e.g., Louisiana) is expected to see a 5.5 percent increase in mortality 

rates under my core model, but only a 3.8 percent increase when omitting humidity. Conversely, 

the New England Division (e.g., New York) has an estimated 1.9 percent decrease in mortality 

under my core model, as opposed to a 1.3 decrease without controlling for humidity. With 

respect to energy consumption, the bias from omitting humidity follows a similar pattern across 

states (results not reported). Given poverty is more concentrated in the South (Census Bureau, 

2009), my results suggest that the omitting humidity underestimates the extent to which the poor 

will be impacted by climate change. 

As an important aside, these estimates imply that accounting for humidity is even more 

important when evaluating the distributional effects of climate-change across countries. 

Generalizing my core estimates, Table 5 shows that tropical areas of the world might be expected 

to experience an increase in mortality in the coming century.45  For example, my core model 

predicts that South-eastern Asia would experience an 8.3 percent increase in mortality rates. A 

model that omits humidity predicts only a 5.3 percent increase in mortality in South-eastern Asia. 

Conversely, temperate places are expected to have lower mortality rates in the future. For 

example, Western Europe is estimated to have a 2.0 percent decrease in mortality when 

controlling for humidity, but only a 0.9 percent decrease in mortality when humidity is excluded. 

As such, omitting humidity generally underestimates the burden of climate change on tropical 

(mostly developing) countries, but overestimates the burden on temperate (mostly developed) 

countries. 

 

                                                 
44 State-specific estimates are available upon request.  
45 Note that these estimates ignore the impacts of climate change on tropical diseases (e.g., malaria) among other 
things.  



26 
 

9 Conclusions 

My research explores the impacts of temperature and humidity on mortality rates and 

energy consumption to help clarify the potential consequences of climate change for the United 

States. To my knowledge, this is the first study to provide comprehensive evidence that 

humidity, like temperature, is an important determinant of mortality. Under a “business-as-usual” 

climate-change scenario, I find there will be an increase in mortality rates of around 1.3 percent 

by the end of the 21st century. Also, there will be a 4.8 percent increase in energy expenditure in 

the residential sector. On the aggregate, omitting humidity causes me to underestimate the costs 

of climate change by a small but economically meaningful amount.  

In particular, my research shows that controlling for humidity is important in the context of 

predicting the distributional effects of climate change. Omitting humidity underestimates the 

costs of climate change in areas with hot and humid climates, but overestimates the costs in areas 

with cold and dry climates. Given poverty rates are highest in places with hot and humid (or 

tropical) climates, my paper suggests that controlling for humidity has important implications for 

devising optimal climate-change policies that address fairness and equity.  
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Figure 1 

Daily mean temperature (ºF) and daily mean specific humidity (g/kg), New Orleans and Phoenix 
by day, 2002 only 
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Figure 2 

Daily distribution of temperature and humidity, 1968-2002 
Panel A: Daily mean temperatures by 10ºF increments 

 
Panel B: Daily mean specific humidity by 2 g/kg increments 

 
Notes: Frequencies were computed using state-year populations as weights.   
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Figure 3 

Mean monthly mortality rate, mean monthly temperature and mean monthly humidity, 
United States (1968-2002) 

Panel A: Temperature 

 
Panel B: Humidity 

 
Notes: This figure was derived from population weighted state-month NCDC data, where the 
weights were fixed at the average population of each state between 1968 and 2002.   
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Figure 4 

Main results, the percentage change in the annual mortality rate from one additional day within a given temperature or humidity bin 
relative to 60-70ºF and 8-10 g/kg, respectively 

 

 
 
Notes: Regression coefficients from Table 1, column (3), are normalized based on the average annual mortality rate (per 100,000) for 
the United States, between 1968 and 2002.  The dotted lines represent the 95% confidence interval. 
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Figure 5 

By primary cause of death, the percentage change in the annual mortality rate from one 
additional day within a given temperature or humidity bin relative to 60-70ºF and 8-10 g/kg, 

respectively 
 

Panel A: Cardiovasular 

  
Panel B: Respiratory 
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Figure 5 cont. 
Panel C: Cancer 

  
Panel D: Motor vehicle accidents 

 
 
Notes: The axes vary across panels. See notes to Figure 4. 
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Figure 6 

State model versus county model, the percentage change in the annual mortality rate from one additional day within a given 
temperature or humidity bin relative to 60-70ºF and 8-10 g/kg, respectively, 1968-2002 for counties with over 100,000 inhabitants 

(N=389) 

 
Notes: These estimates came from regressions that were weighted by county-year or state-year populations.  Both models have 
controls for precipitation, unrestricted year-month fixed effects, state-by-calendar-month-specific linear time trends, and state-by-year 
fixed effects; the state model has state-by-calendar-month fixed effects, while the county model has county-by-calendar-month fixed 
effects and county-specific time trends.  
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Figure 7 

By climate of the state, the percentage change in the annual mortality rate from one additional 
day within a given temperature or humidity bin relative to 60-70ºF and 8-10 g/kg, respectively 

Panel A: Hot states 

 
Panel B: Cold states 

 
Notes: Hot states (cold states) are the 25 (26) states with the highest (lowest) frequency of days 

with temperatures above 65°F per year on average between 1968 and 2002. 
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Figure 8 

The percentage change in annual per capita energy consumption in the residential sector from one additional day within a given 
temperature or humidity bin relative to 60-70ºF and 8-10 g/kg, respectively 

  

  
 
Notes: The dotted lines represent the 95% confidence interval. 
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Figure 9 

Climatic changes (in days per year) between the 1968-2002 period and the 2070-2099 period, A1F1 scenario of the Hadley CM3 
climate-change model 
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Table 1 

Summary of monthly means 
1968-2002 

            

Region 

  
Entire 
U.S.   

North-
east 

Mid-
west South West 

Mortality rate (per 100,000), by cause of death 

All causes 73.0 79.4 75.5 73.9 61.6 
 

Cardiovascular 33.5 37.9 36.0 33.1 26.5 
 

Cancer 15.9 17.9 16.3 15.8 13.5 
 

Respiratory 5.0 5.1 5.0 4.8 4.9 
 

Motor vehicle 1.7 1.2 1.6 2.0 1.7 
 

 
Temperature (ºF) indicator variables 

 
TEMP = <0 0.00 0.003 0.009 0.000 0.002 

 
TEMP = 0-10 0.01 0.012 0.022 0.001 0.004 

 
TEMP = 10-20 0.02 0.042 0.048 0.005 0.010 

 
TEMP = 20-30 0.06 0.097 0.096 0.022 0.034 

 
TEMP = 30-40 0.12 0.168 0.158 0.075 0.088 

 
TEMP = 40-50 0.15 0.162 0.138 0.130 0.175 

 
TEMP = 50-60 0.18 0.162 0.145 0.160 0.260 

 
TEMP = 70-80 0.19 0.145 0.169 0.269 0.148 

 
TEMP = 80-90 0.07 0.018 0.039 0.136 0.054 

 
TEMP = 90+ 0.00 0.000 0.001 0.003 0.011 

 

 
Humidity (g/kg) indicator variables 

 
HUMID = 0-2 0.07 0.127 0.116 0.032 0.033 

 
HUMID = 2-4 0.21 0.260 0.261 0.150 0.199 

 
HUMID = 4-6 0.18 0.164 0.161 0.142 0.277 

 
HUMID = 6-8 0.14 0.122 0.113 0.114 0.256 

 
HUMID = 10-12 0.09 0.093 0.089 0.107 0.046 

 
HUMID = 12-14 0.07 0.070 0.072 0.109 0.019 

 
HUMID = 14-16 0.06 0.040 0.053 0.115 0.008 

 
HUMID = 16-18 0.04 0.012 0.025 0.099 0.001 

 
HUMID = 18+ 0.01   0.001 0.006 0.027 0.000 

 
 
 Notes: Means were calculated using the state-year population as weights. 
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Table 2 

Main results, outcome = monthly mortality rate (per 100,000 inhabitants), 1968-2002 
        

  (1) (2) (3) 

Specification: 
TEMP 
only HUMID only 

TEMP + 
HUMID 

Outcome mean: 73.0 73.0 73.0 

TEMP = <0 15.27 3.34 
(2.52)*** (2.49) 

TEMP = 0-10 12.95 2.29 
(1.74)*** (1.85) 

TEMP = 10-20 15.93 5.06 
(1.12)*** (1.51)*** 

TEMP = 20-30 14.20 6.25 
(1.16)*** (1.18)*** 

TEMP = 30-40 12.66 7.08 
(0.98)*** (0.89)*** 

TEMP = 40-50 8.71 5.19 
(0.79)*** (0.69)*** 

TEMP = 50-60 4.28 3.09 
(0.78)*** (0.62)*** 

TEMP = 70-80 -1.28 -1.76 
(0.74)* (0.85)** 

TEMP = 80-90 1.15 0.53 
(1.04) (1.26) 

TEMP = 90+ 9.94 12.46 
(3.48)*** (3.19)*** 

HUMID = 0-2 12.88 10.77 
(0.74)*** (1.31)*** 

HUMID = 2-4 9.87 5.52 
(0.62)*** (0.68)*** 

HUMID = 4-6 4.41 1.94 
(0.43)*** (0.53)*** 

HUMID = 6-8 1.13 0.03 
(0.39)*** (0.47) 

HUMID = 10-12 -1.91 -1.03 
(1.03)* (1.03) 
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Table 2 cont.  
 
HUMID = 12-14 -1.53 0.15 

(1.28) (1.21) 
HUMID = 14-16 -0.12 1.11 

(0.91) (1.16) 
HUMID = 16-18 -0.14 1.41 

(1.00) (1.20) 
HUMID = 18+ 4.24 3.47 

(1.23)*** (1.16)*** 

Precipitation Yes Yes Yes 
Year-by-month f.e. Yes Yes Yes 
State-by-month f.e. Yes Yes Yes 
State-by-calendar-month-
specific  
     linear time trends Yes Yes Yes 
State-by-year f.e. Yes Yes Yes 

R-squared 0.9720 0.9710 0.9720 
F-statistic 41.63 53.74 82.79 
Observations 21,420 21,420 21,420 

 
Notes: *10%, **5%, ***1% significance levels.  The unit of observation is state by year by 
calendar month (N=21,420).  Standard errors (in parentheses) are clustered on decedent’s state of 
residence.  Regressions are weighted by the total state-year population.  The F-test was 
conducted on the TEMP, HUMID, and precipitation variables.  TEMP refers to daily mean 
temperature (ºF) and HUMID refers to daily specific humidity (g/kg).  The controls in each 
regression include a vector of precipitation variables, unrestricted time effects, state-by-calendar 
month fixed effects, state-by-calendar-month linear time trends, and state-by-year fixed effects.  
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Table 3 
Estimated impacts of climate change  

A1F1 climate-change predictions from the Hadley CM3 model (c. 2070-2099) 

                

(1) (2) (3) 

Percentage change 
(std. error) Absolute change Welfare cost 

Panel A: Baseline estimates 

Change in mortality 1.3 34,000 deaths $235  billion 

(0.6) 

Change in energy consumption (BTU) 4.8 9.9  quadrillion $75  billion 

(3.4) 

Total cost $310  billion 

Panel B: Omitting humidity 

Change in mortality 0.9 24,000 deaths $171  billion 

(0.6) 

Change in energy consumption (BTU) 2.4 5.0 quadrillion $38  billion 

(2.9) 

Total cost $209  billion 
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Table 4 

By Census Division of the United States, percentage change in mortality rates using the A1F1 
climate-change predictions from the Hadley CM3 model (c. 2070-2099) 

 

          

(1) (2) (1)-(2) 

  Specification: 

Core 
(controls for 

humidity) 
Omits 

humidity Difference 

New England -1.9 -1.3 -0.6 

(1.10) (0.88) (1.41) 

Middle Atlantic -1.0 -0.7 -0.3 

(0.80) (0.67) (1.04) 

East North Central 0.0 0.3 -0.3 

(1.27) (1.20) (1.75) 

West North Central 1.1 0.9 0.2 

(2.02) (2.06) (2.88) 

South Atlantic 2.3 1.3 1.1 

(2.57) (2.05) (3.29) 

East South Central 3.2 2.3 0.9 

(1.80) (1.80) (2.55) 

West South Central 5.5 3.8 1.8 

(3.01) (3.17) (4.37) 

Mountain -0.6 0.8 -1.4 

(1.44) (1.32) (1.95) 

Pacific 1.6 1.1 0.5 

    (1.43) (1.40) (2.00) 

 
Notes: Standard errors are in parentheses. 
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Table 5 

Percentage change in mortality rates worldwide,  
by United Nations Division 

          

(1) (2) (1)-(2) 

  Specification: 
Core (controls for 

humidity) 
Omits 

humidity Difference 

Australia and New 
Zealand -0.6 -0.6 0.0 

Caribbean 7.4 5.4 2.0 

Central America 3.2 1.7 1.4 

Eastern Africa 4.1 2.3 1.8 

Eastern Asia 0.6 0.7 -0.1 

Eastern Europe -1.3 -0.3 -0.9 

Melanesia 5.1 3.3 1.9 

Micronesia 3.2 3.3 -0.1 

Middle Africa 6.4 3.6 2.8 

Northern Africa 2.8 1.3 1.4 

Northern America 2.5 2.2 0.3 

Northern Europe -2.4 -1.1 -1.3 

Polynesia 3.4 2.3 1.1 

South America 4.1 2.7 1.4 

South-central Asia 6.6 4.3 2.4 

South-eastern Asia 8.3 5.3 3.0 

Southern Africa 0.5 -0.1 0.6 

Southern Europe 0.2 0.2 0.0 

Western Africa 8.3 5.0 3.2 

Western Asia 2.1 1.2 0.9 

Western Europe   -2.0 -0.9 -1.1 

 
Notes: The global predictions use population estimates from the CIESIN and assume baseline 
mortality rates that are equal to the United States. These estimates use climate change predictions 
from the Hadley CM3 model and my core set of estimates (Figure 4). Standard errors not 
reported. 
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Appendix Table 1 

 By age, outcome = monthly mortality rate (per 100,000 inhabitants), 1968-2002 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Age group: < 1 1-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Outcome mean: 98.94 4.62 2.38 8.59 10.89 19.26 44.26 106.5 236.1 527.43 1297.43 

TEMP = <0 1.20 -3.98 -0.32 -4.13 -3.57 -2.53 4.72 2.73 17.07 24.04 175.16 
(11.61) (1.13) (0.61) (1.20) (1.15) (1.66) (3.38) (4.97) (10.06) (25.42) (93.45) 

TEMP = 0-10 15.57 -0.89 -1.13 -3.53 -1.84 -2.09 3.69 7.14 15.56 1.96 67.11 
(15.09) (1.03) (0.52) (1.10) (1.04) (1.47) (3.10) (5.56) (8.49) (24.20) (65.30) 

TEMP = 10-20 6.08 -2.85 -0.11 -2.49 -1.28 -3.42 1.12 3.99 24.21 34.21 158.01 
(9.70) (0.89) (0.55) (0.68) (1.02) (1.13) (2.15) (4.48) (6.33) (20.47) (62.48) 

TEMP = 20-30 10.01 -0.92 -0.02 -1.44 -0.91 -1.16 2.42 6.71 20.19 48.95 205.20 
(6.37) (0.58) (0.31) (0.57) (0.57) (0.62) (1.00) (2.75) (4.98) (15.30) (43.20) 

TEMP = 30-40 9.97 -0.29 0.13 -0.74 0.54 -0.19 3.21 5.90 20.73 61.20 201.20 
(5.36) (0.40) (0.26) (0.43) (0.48) (0.65) (0.75) (2.56) (3.91) (7.49) (25.83) 

TEMP = 40-50 7.04 -0.23 0.10 -0.20 0.44 0.40 1.39 4.50 13.25 40.01 170.09 
(3.70) (0.39) (0.20) (0.38) (0.30) (0.51) (0.86) (2.02) (2.87) (7.14) (24.17) 

TEMP = 50-60 6.23 0.08 0.12 -0.32 0.13 -0.27 1.23 3.52 9.37 23.65 103.16 
(2.99) (0.33) (0.16) (0.36) (0.28) (0.57) (0.89) (1.47) (3.03) (5.60) (15.70) 

TEMP = 70-80 -1.63 0.11 0.12 0.12 0.61 -0.23 -0.34 -2.51 -5.45 -20.23 -38.37 
(2.46) (0.34) (0.14) (0.33) (0.30) (0.47) (0.77) (1.56) (3.12) (6.47) (30.29) 

TEMP = 80-90 -1.34 0.03 0.26 0.77 1.05 0.93 1.24 0.73 1.35 -5.96 -13.31 
(2.80) (0.29) (0.19) (0.47) (0.42) (0.75) (0.99) (2.52) (3.80) (9.23) (42.25) 

TEMP = 90+ 22.77 -0.41 0.40 1.95 2.22 3.71 4.99 7.92 43.40 123.03 193.75 
(6.30) (2.09) (0.56) (1.53) (1.54) (2.49) (2.94) (7.36) (17.09) (25.20) (76.47) 

HUMID = 0-2 -5.73 2.28 0.76 0.06 1.07 3.54 2.08 10.93 26.97 101.73 348.73 
(5.59) (0.58) (0.29) (0.64) (0.70) (0.84) (1.29) (2.31) (6.29) (14.82) (36.92) 

HUMID = 2-4 -2.92 0.93 0.27 -0.74 -0.27 1.35 0.92 6.05 18.18 41.48 198.66 
(3.59) (0.49) (0.21) (0.44) (0.42) (0.58) (0.83) (1.48) (3.93) (7.78) (25.96) 
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Appendix Table 1 cont. 
 
HUMID = 4-6 -5.72 0.45 0.07 -0.55 -0.01 0.33 0.67 3.65 10.60 14.16 46.90 

(3.06) (0.39) (0.16) (0.35) (0.33) (0.49) (0.87) (1.48) (3.30) (6.77) (19.46) 
HUMID = 6-8 -4.34 0.34 0.27 -0.45 -0.02 0.08 -0.51 0.62 2.29 -8.91 -28.44 

(4.13) (0.44) (0.24) (0.45) (0.36) (0.58) (0.87) (1.62) (3.34) (8.67) (18.20) 
HUMID = 10-12 -9.62 0.22 0.54 -0.90 -0.03 -0.07 -1.34 0.86 0.79 -14.52 -53.83 

(4.41) (0.59) (0.33) (0.63) (0.49) (0.84) (1.66) (2.55) (4.22) (11.08) (32.13) 
HUMID = 12-14 0.11 -0.70 0.17 -0.44 -0.04 0.37 -0.83 1.35 3.96 0.08 4.46 

(5.00) (0.41) (0.26) (0.41) (0.50) (0.60) (1.09) (2.44) (4.04) (8.33) (33.88) 
HUMID = 14-16 1.81 0.41 0.26 0.19 -0.50 0.38 -0.22 1.60 6.99 5.94 17.49 

(5.66) (0.59) (0.35) (0.63) (0.45) (0.76) (1.28) (2.87) (3.84) (8.75) (33.48) 
HUMID = 16-18 6.43 -0.34 0.92 -1.11 0.32 0.36 -0.62 4.14 13.79 -2.46 6.66 

(5.59) (0.67) (0.32) (0.64) (0.57) (0.94) (1.60) (2.81) (5.79) (10.37) (44.05) 
HUMID = 18+ 1.83 0.70 0.72 0.50 0.23 0.85 2.17 4.01 5.74 21.22 91.62 

(7.41) (0.74) (0.42) (0.61) (0.87) (0.79) (3.29) (3.51) (4.75) (11.56) (38.25) 

Precipitation Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year-by-month 
f.e. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State-by-month 
f.e. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State-by-calendar-
month-specific 
linear time trends Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State-by-year f.e. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

F-test statistic 3.22 4.26 2.64 11.74 7.45 8.38 13.62 12.91 40.60 45.63 48.79 
F-test p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
R-squared 0.92 0.66 0.69 0.79 0.80 0.88 0.94 0.95 0.95 0.94 0.88 

 
Notes: see notes to Table 1. Significance levels omitted. 
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Appendix Table 2 

Controls for heat index, temperature-humidity interactions 
Outcome = monthly mortality rate (per 100,000 inhabitants), 1968-2002 

        

 Specification: (1) (2) (3) 

TEMP = <0 3.30 2.70 3.12 
(2.49) (2.36) (2.48) 

TEMP = 0-10 2.25 1.64 2.05 
(1.80) (1.87) (1.91) 

TEMP = 10-20 5.00 4.44 4.82 
(1.46)*** (1.55)*** (1.58)*** 

TEMP = 20-30 6.22 5.66 6.06 
(1.24)*** (1.12)*** (1.20)*** 

TEMP = 30-40 7.03 6.48 6.88 
(1.04)*** (1.07)*** (0.93)*** 

TEMP = 40-50 5.16 4.65 5.02 
(0.73)*** (0.67)*** (0.72)*** 

TEMP = 50-60 3.10 2.62 3.00 
(0.89)*** (0.72)*** (0.62)*** 

TEMP = 70-80 -1.01 -5.10 -1.21 
(1.98) (2.13)** (0.99) 

TEMP = 80-90 0.64 -2.71 -4.75 
(2.26) (2.21) (2.43)* 

TEMP = 90+ 8.49 9.19 9.08 
(3.76)** (3.70)** (2.95)*** 

HUMID = 0-2 10.84 11.23 11.02 
(1.34)*** (1.28)*** (1.36)*** 

HUMID = 2-4 5.57 5.94 5.72 
(0.69)*** (0.70)*** (0.69)*** 

HUMID = 4-6 1.98 2.29 2.10 
(0.53)*** (0.51)*** (0.54)*** 

HUMID = 6-8 0.04 0.28 0.12 
(0.45) (0.47) (0.46) 

HUMID = 10-12 -1.07 -1.34 -1.17 
(1.11) (1.11) (1.08) 

HUMID = 12-14 -0.14 -0.84 -0.20 
(1.26) (1.31) (1.17) 

HUMID = 14-16 0.87 -0.86 0.56 
(1.23) (1.72) (1.22) 

HUMID = 16-18 1.45 -1.18 0.51 
(1.26) (1.92) (1.38) 

HUMID = 18+ 1.25 0.09 1.09 
(1.79) (2.45) (1.88) 
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Appendix Table 1 cont. 
 
HEAT INDEX=70-80 -0.33 

(2.48) 
HEAT INDEX=80-90 -0.77 

(2.79) 
HEAT INDEX=90+ 3.23 

(4.24) 
TEMP (70+) x HUMID 0.35 

(0.21)* 
TEMP (80+) x HUMID 0.41 

(0.22)* 

Precipitation Yes Yes Yes 
Year-by-month f.e. Yes Yes Yes 
State-by-month f.e. Yes Yes Yes 
State-by-calendar-month-
specific linear time trends Yes Yes Yes 
State-by-year f.e. Yes Yes Yes 

R-squared 0.972 0.972 0.972 
F-statistic 77.94 80.46 82.97 
Observations 21,420 21,420 21,420 

 
Notes: The heat index is a widely-cited measure of dangerously high temperature-humidity 
combinations (NOAA). TEMP (70+) x HUMID interacts a dummy for those days with 

temperatures above 70°F with humidity. TEMP (80+) x HUMID interacts a dummy for those 

days with temperatures above 80°F with humidity. 
 
 
 


