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Abstract 

Previous efforts to estimate child mortality levels in small geographical areas 

have been hampered by the relative rarity of child deaths, which has often resulted in 

unstable and unreliable estimates. However, with a spatial smoothing process based upon 

Bayesian Statistics it is possible to “borrow” information from neighboring areas in order 

to generate more stable and accurate estimates of mortality in smaller areas. The 

objective of this study is to use this spatial smoothing process to derive estimates of child 

mortality at the level of the municipality in Brazil. Using data from the 2000 Brazil 

Census, I derive both Bayesian and non-Bayesian estimates of mortality for each 

municipality. In comparing the smoothed and raw estimates of this parameter, I find that 

the Bayesian estimates yield a clearer spatial pattern of child mortality with smaller 

variances in less populated municipalities, thus, more accurately reflecting the true 

mortality situation of those municipalities. 



Introduction 

In Brazil, child mortality has declined substantially in the last several decades 

from 177 deaths per 1,000 live births in 1960 to only 33 deaths per 1,000 live births in 

2005 (UNICEF 2006). Yet, rates of mortality decline have slowed in recent years. While 

rates declined, on average, by 3.9 deaths per 1,000 live births per year between 1960 and 

1990, the decline in rates were much lower (1.8 deaths per 1,000 live births) between 

1990 and 2005. In addition, when compared to other countries, Brazil’s child mortality 

rates remain elevated. According to the World Health Organization (2006), child 

mortality rates in Brazil are higher than those of the United States and Canada as well as 

a number of other Latin American countries including Argentina, Columbia, Ecuador, 

Mexico, Panama, and Venezuela. In fact, Brazil’s child mortality rates are most similar to 

those of the Dominican Republic, Belize, Nicaragua, and Honduras, countries whose 

combined Gross Domestic Product is substantially below that of Brazil (World Bank 

2007). 

Additionally, child mortality rates in Brazil have been shown to vary considerably 

throughout the country. There are strong regional differentials in mortality rates with the 

North and Northeast consistently demonstrating much higher rates than the South and 

Southeast regions (e.g. Carvalho 1974, Alves 2003).  And, while regional differentials in 

levels and declines in child mortality Brazil are both large and persistent, there is also 

evidence of even greater differentials at smaller geographic levels. For example, Alves 

(2003) found that infant mortality rates in the year 2000 ranged from a low of  8.5 deaths 

per 1,000 births in municipalities in the South to rates as  high as 110 deaths per 1,000 



live births in municipalities  in the North – rates that are similar to those found in poor 

African countries (United Nations Development Programme 2003). 

The Task Force on Child Health and Maternal Health, established by the United 

Nations to monitor and evaluate progress towards improvements in maternal and child 

health, concluded that “deep inequities in health status and access to healthcare both 

between and, equally important, within countries” (Freedman et al. 2005 p. xi) are a 

major contributor to the difficulties experienced by countries trying to reduce child 

mortality. According to the task force, efforts to improve maternal and child health must 

shift from a “one-size-fits-all” approach to one that includes “the intimate spaces of 

families, households, and communities” (p.2). They recommend that initiatives for 

assessing and addressing  health status and access to care should have a much smaller 

geographical focus, stating that “until initiatives genuinely draw on context-specific 

knowledge and local capacity, health initiatives will not succeed at scale” (p.22). 

 Consequently, those working towards further reductions child mortality in 

countries such as Brazil have begun to focus on identifying levels of child mortality for 

smaller geographical areas. In Brazil, the United Nations Development Programme 

(UNDP) now publishes child mortality rates for each municipality in Brazil. However, 

these rates are constructed using birth and death certificate data (UNDP 2009) which 

have some serious limitation. For example, a study of the vital registration system in 

Brazil from 2003 to 2005 found that information on births was inadequate for 13% of the 

total population and as high as 28% for the population in the poorest region of the 

country, the Northeast (Szwarcwald 2008). Figure 1 presents municipal-level child 

mortality rates (per 1,000 live births) published by the UNDP for the year 2000. Of the 



5,505 municipalities shown, 738 are lacking sufficient data for the construction of child 

mortality rates. Additionally, although it is well-established that child mortality rates are 

higher in the northern areas of the country and lower in the southern areas, there is very 

little indication of this in the map. The pattern in municipal-level mortality rates is 

sporadic with a great amount of variation in the rates for all regions of the country. 

Constructing rates for relatively rare events such as child mortality for small 

geographical areas can often be unstable as just a few more or a few less child deaths can 

greatly impact the estimates in areas with small populations. In Brazil, approximately 

one-quarter of all municipalities have less than 5,000 residents while more than half have 

less than 10,000 people. And, with an average child mortality rate of 33 deaths per 1,000 

births in Brazil, it is likely that in many of the municipalities it will be difficult to create 

accurate estimates of child mortality. This idea is illustrated in Figure 2, which plots the 

UNDP municipal-level child mortality rates by the population of the municipalities
1
. 

While child mortality rates are fairly stable and consistent for the municipalities with the 

larger populations, there is a lot of variation in the rates for the municipalities with the 

smaller populations. The high level of instability in child mortality rates in areas with 

small populations is even more evident when comparing Figure 3 which plots the rates 

for the municipalities with the 10% smallest population sizes with Figure 4 which plots 

the rates for the municipalities with the 10% smallest population sizes. Whereas the rates 

for Figure 3 are widely scattered above and below the mean value of 41.5 deaths per 

1,000 live births, in Figure 4 they are all fairly concentrated around the mean of  24.6.  

                                                      
1
 Due to scaling issues, 6 municipalities with the largest population sizes are omitted from the figures. All 

statistical measures include information on these municipalities.   



Table 1 displays the measures of dispersion for the municipal level child mortality 

rates provided by the UNDP for all municipalities, municipalities with the 10% smallest 

populations, and municipalities with the 10% largest populations. Once again, it is very 

clear that child mortality rates for small populations are very unstable.  Not only is the 

range in child mortality rates far greater for the least populated municipalities but also  

the variance is more than eight times higher and the standard deviation is almost three 

times higher in the least populated municipalities compared with the most populated 

municipalities 

In Brazil, child mortality is highly associated with female education, both at the 

level of the individual (e.g. Merrick 1985; Sastry 2004) and the community (e.g. Goldani 

et al. 2002; Alves 2003). As a result, if municipal-level estimates of child mortality are 

accurate, areas with lower levels of education should exhibit higher 
∧

)5(q values while 

areas with higher levels of education should exhibit lower values. To explore this issue, 

Table 1 provides the correlation coefficient for the relationship between years of 

schooling of women aged 25 and above and the child mortality rate. While all 

municipalities and the most populated municipalities exhibit a significant negative 

relationship between education and child mortality, there is a very weak and 

nonsignificant relationship for the least populated municipalities, indicating that the child 

mortality rates for these areas may be unreliable. 

Thus, while efforts have been made to identify levels of child mortality for small 

geographical areas in Brazil, according to UN recommendations, it is clear that the rates  

have some significant weaknesses and, especially in areas with small populations, cannot 

be used with much confidence. Accordingly, the objective of this study is to create more 



stable and reliable estimates of child mortality for each of the 5,505 municipalities in 

Brazil. Using a spatial smoothing process based upon Bayesian Statistics, we will be able 

to “borrow” information from neighboring areas in order to generate more stable 

estimates of mortality in smaller areas, providing valuable information on the true 

mortality risks of children residing throughout all areas of Brazil. 

Data and Methods 

The primary data used for this study is 2000 Brazil Census microdata collected 

from a 20% sample of households located in municípios with less than 15,000 residents 

and a 10% sample of households in municípios with 15,000 or more residents. The 

microdata is derived from a long-form questionnaire which includes questions on 

household conditions and amenities, income and occupation status, literacy and 

education, race, religion, marital status, migration, and parity. The main unit of analysis 

of this study is the municipality (n=5,505) which is determined by a geographic identifier 

included with the Census data (Figure 5). Municipal-level measures of female education 

are constructed by summing the total number of years of schooling for every woman aged 

25 and above in each municipality. The sums are then divided by the total number of 

women aged 25 and above to calculate the mean number of years of schooling for women 

aged 25 and above in each municipality.  

While the long form questionnaire does ask each woman how many children they 

had and the number of children still alive, it does not include sufficient detailed 

information on their reproductive histories to allow for the direct calculation of child 

mortality rates. Yet, it is possible to use Census information that is available to create 

indirect estimates of child mortality. Indirect estimates of child mortality, first introduced 



by William Brass in 1968 (Brass and Coale 1968), have a long history in the field of 

demography and are often used to identify and track mortality trends for countries with 

poor registration systems. Rather than relying on incomplete or erroneous vital statistics 

records, this method uses information that can be easily obtained (women’s age, number 

of children born, and number of children surviving) to calculate the proportion of 

children who have died to women in certain age groups which, in turn, can be converted 

into an estimate of the probability of mortality.  

The first step is to determine the proportion of children who have died for women 

in five-year age groups (15-19, 20-24, 25-29, and 30-34). The proportions are then 

multiplied by an adjustment factor to account for age patterns in childbearing in Brazil. 

The adjustment factor is derived from measures of parity as well as coefficients derived 

from regional model life tables developed by Coale and Demeny (1983) that contain 

information on regional patterns in age-specific mortality. For each age group, the 

modified proportions are considered to be relatively accurate probabilities of death to 

children prior to age a [q(a)]. For example, child deaths attributed to women between the 

ages of 15 and 19 are used to estimate the probability of death for children under the age 

of one, while deaths to women between 30 and 34 are used to estimates the probability of 

death for children under the age of five, or child mortality.  

In this study, we construct indirect estimates of child mortality rates [
∧

)5(q ] for 

each municipality in Brazil in the year 2000. Although traditionally women between the 

ages of 30 and 34 are used to estimate the probability of death among children prior to 

age five, we opt to use younger women, between the ages of 20 and 29. Because the 

intent of this study is to examine mortality levels in the year 2000, it is preferable to use 



younger women as their experience is more heavily influenced by current levels of child 

mortality. In order to use women between the ages of 20 and 29, we start by determining 

how the proportion of children who have died to women between the ages of 20 and 29 

relates to the probability of death to children prior to a specific age. To accomplish this, 

we find the q(a) values for each single year of age using the 2000 Brazil Life Table 

(Table 2). We then find the age distribution of children (living and deceased) for women 

ages 20 to 29 [c20-29(a)] from 1996 DHS data (Table 1). By multiplying the two values 

together, we calculate the proportion of children born to women aged 20 to 29 who would 

have died prior to each age according to the age distribution of these women and the 

Brazilian Life Table probabilities of death prior to each age. Finally, by summing all the 

proportions of children who would have died for each age group, we obtain the total 

proportion of children who would have died among women ages 20 to 29 (Σd20-29) if they 

had the age distribution of children born to women in this age group and the mortality 

risks of the 2000 Life Table.  

 Finally, we then compare the value for Σd20-29, 0.0350, with the original q(a) 

values found in the Brazil Life Table and find that the value of Σd20-29 is most similar to 

the value of q(3), 0.0351. Therefore, the proportion of deaths to children for women aged 

20-29 is most comparable to the probability of death to children prior to the age of 3. 

However, to be consistent with the most commonly used definition of child mortality 

(deaths to children under the age of five), we want to convert this value so that it can be 

used as an estimate of deaths to children under the age of five. Again, we return to the 

Brazil Life Table, this time for multiple years, and find that there is a consistent 



relationship between q(3) and q(5) which is defined with the following regression 

equation:   

q(5) ~ -0.0018 + 1.1017q(3)      (1) 

Thus, by applying this equation to the proportion of children who have died to women 

between the ages of 20 and 29, 
∧

)3(q , we are able to obtain indirect estimates of child 

mortality, 
∧

)5(q , for each municipality in Brazil for the year 2000.  

 Although the Census data does include a large number of records, there is 

still a risk of unstable estimates of child mortality for municipalities with small 

populations. As stated earlier, almost one-quarter of all Brazilian municipalities have less 

than 5,000 residents and one-half have less than 10,000. After  limiting Brazil Census 

microdata to women between the ages of  20 and 29, one-quarter of the municipalities 

have less than 80 women and one-half have less than 150. Thus, there is very little data 

available for constructing estimates of  child mortality for these less-populated 

municipalities, potentially resulting in unstable estimates. This idea is illustrated in 

Figure 6, which displays the confidence intervals surrounding the proportion of children 

who have died to women between 20 and 29 years of age (Σd20-29) for the 5 

municipalities with the largest population sizes and the 5 municipalities with the smallest 

population sizes. The confidence intervals for the most populated municipalities are quite 

small; however, the intervals for the five least populated municipalities are, in 

comparison, extremely large, reflecting very unstable data. 



Bayesian Methods 

 

Not very long ago it would have been virtually impossible to calculate accurate 

estimates of child mortality for municipalities with small populations in Brazil. However, 

improvements in computer technology and the development of efficient sampling 

algorithms advances have made it possible to employ Bayesian statistical methods to 

address many issues related to small sample sizes and unstable estimates (Lawson 2009: 

3). The field of Bayesian Statistics is named for Thomas Bayes, an 18
th

 Century 

mathematician and Protestant minister, who believed that knowledge of previous events 

can be used to help determine the probability of an event occurring in the future (Bayes 

1763).  

Today, almost 250 years later, the field of Bayesian Statistics is still based on 

Bayes’ original theorem.  Rather than relying solely on data, Bayesian methods combine 

data with additional information in order to create stronger and more stable measures. 

This additional information, known as priors, is often obtained from some previous (or 

prior) information already known about the topic. Combining observed data with a prior 

distribution results in a posterior distribution in which each parameter value is now 

represented by a distribution of values determined by both the data (D) and the prior 

distribution (θ): 

=D)|P(θ
∫ θ)dθ|P(θ(θ)P

θ)|P(θ(θ)P
      (2) 

Constructing a posterior distribution can be an extremely difficult process that involves 

complex integrations and is virtually impossible when working with complicated models. 

However, in the 1990s, a sampling method known as the Monte Carlo Markov Chain 



(MCMC) was developed that made it possible to simulate a posterior distribution (Gilks, 

Richardson, and Spiegelhalter 1996).  

When using MCMC to simulate a posterior distribution, a Markov chain consists 

of a set of states in which each state contains a value for the parameter of interest. The 

Markov chain is a series of random states wherein each future state is only dependent on 

the current state and is independent of any past states, known as the Markov property. 

The chain begins in a starting state (defined by an initial probability distribution) and then 

moves successively to additional states. After a number of steps, the Markov chain 

should eventually stabilize so that the value of the parameter in each successive state is 

determined only by the current state and a probability distribution defined by the 

combined effect of the data and prior distribution. Once the posterior distribution has 

been effectively simulated, it is then possible to sample values from the Markov chain 

which accurately represent the values from the posterior distribution. 

There are several different MCMC methods that can be used to simulate samples 

of the posterior distribution. This study uses the Gibbs sampling method which has been 

used in Bayesian Statistics for over two decades and is now one of the most commonly 

used methods.  Gibbs sampling consists of assigning starting values for all parameters. In 

the first iteration, the first parameter is assigned an “updated” value obtained by 

randomly sampling the conditional probability distribution given the values of all other 

parameters and the observed data/prior distribution. Next, the second parameter is also 

assigned a new value sampled from the probability distribution given the new value of 

the first parameter, the starting values of the other parameters, and the data. This process 

continues until all parameters have been assigned new values resulting in the completion 



of one Markov chain. Then, in the next iteration, the first parameter is given a new value 

dependent, again, on the probability distribution, the data, and the new values assigned to 

all the other parameters in the first iteration. This process continues until eventually the 

chain converges so that the values of all parameters are determined by the combined 

effect of the observed data and the probability distribution, the prior distribution.  

Spatial smoothing 

In studies in which data are aggregated to a geographical level, prior distributions 

are often not derived from previous information but instead derived from the data in 

neighboring areas. In the field of spatial statistics, it is well established that 

geographically close areas often share a number of similarities. Thus, the distribution and 

mean of neighboring areas can be “borrowed” to create a prior distribution that 

strengthens the data for areas with unstable estimates due to small sample sizes (Lawson 

2009). In this study, neighbors are defined as municipalities that are physically connected 

to one another and are identified using the program GeoDa. Overall, there are a total of 

32,836 neighbors in Brazil with an average of 6 neighbors per municipality. The smallest 

number of neighbors is 1 and the largest number of neighbors is 23.  

To use prior distributions obtained from neighboring areas, we employ a 

hierarchical Bayesian model using the program WinBUGS (Bayesian inference Using 

Gibbs Sampling). The first level of the model consists of the level of mortality in a region 

in which Y (the number of child deaths reported by women aged 20 to 29 in each 

municipality i) is modeled using a binomial distribution
2
: 

Yi ~ binomial(pi ,ni)        (3) 

                                                      
2
 A binomial distribution is the preferred distribution when dealing with counts in small populations (Arató, 

Dryden, and Taylor 2006) 



where pi is the probability of a child dying among women aged 20 to 29 in each 

municipality i and ni is the number of children born to women aged 20 to 29 each 

municipality i. The probability of a child dying (pi) is modeled using a log-linear model:  

logit(pi) = α + βi        (4) 

where α is an unstructured random effect and βi is a spatially structured random effect.  

The second level of the hierarchical Bayesian model is the prior distribution for 

the spatially structured random effect using a conditional autoregressive (CAR) model: 

( ) ( ) 
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which identifies dependence between neighboring areas by making wi,i+1 = 1 if 

municipalities i and i+1 are neighbors and wi,i+1 = 0 if they are not. Additionally, the 

CAR model also includes the hyperparameter τ which denotes how similar neighboring 

areas should be. Due to uncertainty in the degree of similarity in neighboring areas, in the 

third level of the hierarchical model, τ is assigned its own distribution, a hyperprior 

distribution, with a very weak gamma distribution: 

τ ~ γ(0.5, 0.0005)        (6) 

Results 

Crude municipal-level estimates of child mortality 

Crude estimates of child mortality are mapped for each municipality in Figure 7. 

Of the 5,505 municipalities, 
∧

)5(q  values are less than 0.025 for 28% of the 

municipalities, between 0.025 and 0.049 for 34%, between 0.050 and 0.099 for 24%, and 

0.100 and higher for 4%. Additionally, 10% of municipalities have insufficient data to 

create estimates of child mortality. In terms of spatial patterns, municipalities with higher 



estimates of child mortality appear to be somewhat more concentrated in the northern 

part of the country while municipalities with lower estimates are concentrated more in the 

southern areas. However, the spatial pattern is relatively weak as there is great variation 

in 
∧

)5(q  values for municipalities in all regions of the country.    

 

Further descriptive information about the crude estimates of child mortality is 

presented in Table 3. The mean 
∧

)5(q value for all municipalities is 0.043 with the 

Northeast demonstrating the highest value (0.062) and the South demonstrating the 

lowest (0.031). The variation in 
∧

)5(q values for all municipalities is quite large with a 

range of 0.001 to 0.274, a variance of 0.00086, and a standard deviation of 0.029. Within 

the different regions, variation is highest for the North and lowest for the Southeast 

although the difference in standard deviations between the two regions is only 0.008. . In 

addition, 534 municipalities had no reported child deaths among women between the 

ages of 20 and 29, making it impossible to calculate 
∧

)5(q values for these areas.  

  

As stated previously, one of the difficulties in constructing estimates in child 

mortality for areas with small population sizes is that the estimates tend to be unstable 

with a few more or a few less deaths greatly impacting estimates. To see how variation in 

∧

)5(q  values relates to sample size, Figure 8 plots 
∧

)5(q  values by the number of women 

aged 20 to 29 sampled in each municipality
3
. As expected, variation in 

∧

)5(q values is 

highest in the municipalities with the smallest sample sizes and decreases substantially as 

                                                      
3
 Due to scaling issues, 6 municipalities with very large sample sizes of women (20,000 or more) are 

omitted from the graphs. This had no impact on measures of variance or standard deviation.  



sample size increases. Figure 9, which plots 
∧

)5(q values for the municipalities with the 

10% smallest sample sizes, shows a much greater dispersion of values when compared to 

Figure 10, which is limited to the municipalities with the 10% largest sample sizes. The 

range in 
∧

)5(q values for areas with the smallest sample sizes is between 0.011 and 0.211, 

compared with 0.012 to 0.068 for the areas with the largest sample sizes. Additionally, 

compared with Figure 10, the variance and standard deviation of 
∧

)5(q values in Figure 9 

are 92 and 73% higher.  

In Brazil, child mortality is highly associated with female education, both on at 

the level of the individual (e.g. Merrick 1985; Sastry 2004) and the community (e.g. 

Goldani et al. 2002; Alves 2003). As a result, if municipal-level estimates of child 

mortality are accurate, areas with lower levels of education should exhibit higher 

∧

)5(q values while areas with higher levels of education should exhibit lower values. 

Figure 11, which plots municipal-level estimates of child mortality by the mean number 

of years of schooling of women aged 25 and above, does show some evidence of this 

relationship as child mortality levels tend to decrease as female education increases. In 

fact, the correlation coefficient of -0.44 is statistically significant. However, it is 

important to note that there is a high level of variability in estimates of child mortality at 

all levels of education.  

 

When limiting the data to municipalities with the 10% smallest sample sizes 

(Figure 12), the relationship between child mortality and education is virtually 

nonexistent. Not only are the 
∧

)5(q values widely dispersed across all levels of education 



but the correlation coefficient (-0.8) is extremely weak and not statistically significant. In 

contrast, in Figure 13, which includes only municipalities with the largest sample sizes, 

the relationship between child mortality and education is strong and consistent with clear 

visual evidence that higher child mortality in areas with lower levels of female education 

and vice-versa. Additionally, the correlation coefficient is strong (-0.62) and significant. 

These findings indicate, once again, that estimates of child mortality in areas with small 

populations may be very unreliable. 

Municipal-level Bayesian estimates of child mortality 

 

To attempt to address issues related to sample size and unstable (or missing) 

estimates of child mortality, I construct Bayesian estimates for each municipality. Figure 

14 presents these estimates with the following breakdown: 26% of municipalities had 

∧

)5(q values of less than 0.025, 48% had values between 0.025 and 0.049, 24% had values 

between 0.050 and 0.099, and 1% had values of 0.100 and above. In comparison with 

Figure 4, there is much greater evidence of a spatial pattern in levels of child mortality 

using a Bayesian approach. Overall, there is far less variation in municipalities that are 

geographically close and clear and consistent evidence of elevated mortality levels in 

municipalities in the northern regions of the country and lower levels in municipalities in 

the southern regions.   

Table 4 presents descriptive statistics for municipal-level Bayesian estimates of 

child mortality. The mean 
∧

)5(q value for all municipalities is 0.040, a slight decrease 

from the mean crude value of 0.043 (Table 3). Likewise, the mean 
∧

)5(q  values for each 

region are all slightly lower using a Bayesian approach however the overall pattern 



remains the same as the Northeast continues to have the highest mean value (0.061) and 

the South has the lowest (0.025). Most importantly, though, is that using a Bayesian 

approach results in substantial declines in variation in 
∧

)5(q values, indicating that 

estimates of child mortality are far more stable using this approach. For the country as a 

whole, the range in 
∧

)5(q  values decreased from 0.001 to 0.274 for crude estimates to 

0.013 to 0.202 for Bayesian estimates. Additionally, the variance decreased 55% from 

0.0009 to 0.0004 and the standard deviation decreased 31% from 0.029 to 0.020. Finally, 

by “borrowing” data from neighboring areas, we can now create estimates of child 

mortality for areas in which it is not possible using only the indirect estimation approach 

and, thus, have no municipalities with missing 
∧

)5(q  values. 

 

Figure 15 plots Bayesian estimates by the sample size of women aged 20 to 29 in 

each municipality. While estimates are more varied for municipalities with small sample 

sizes of women, the level of variation is smaller when using a Bayesian approach. 

Compared with the crude estimates (Figure 8), the Bayesian estimates are more clustered 

around a smaller range of values and, as seen above, have both lower variance and 

standard deviation.  

Much of the improvement in variation occurs within municipalities with small 

population sizes.  Compared with Figure 9 above, in Figure 16 
∧

)5(q  values are much 

more concentrated around a smaller range of values and all measures of variation are 

lower using a Bayesian approach. Whereas previously the 
∧

)5(q  values ranged from 0.011 

to 0.211, all values now fall between 0.016 and 0.096. Additionally, variance decreased 



by 85% from 0.0013 to 0.0002 and the standard deviation decreased 62% from 0.037 to 

0.014.   

In contrast, the graph for Bayesian estimates of child mortality for municipalities 

with the 100 largest sample sizes (Figure 17) is virtually identical to the graph for crude 

estimates of child mortality (Figure 10). While the range is only slightly different (0.012-

0.068 for crude estimates and 0.014-0.068 for Bayesian estimates), both the variances and 

standard deviations are identical. This is due to the fact that the effect of the prior 

distribution is much less for areas with bigger sample sizes and, thus, estimates in these 

areas will be primarily determined by the data even when using a Bayesian approach.  

To assess the reliability of the Bayesian estimates of child mortality, Figures 18-

20 show Bayesian 
∧

)5(q values by the mean number of years of schooling of women aged 

25 and above. Using only crude estimates of child mortality (Figures 11-13), the 

relationship between education and mortality tends to be fairly weak (especially in 

municipalities with small population sizes). However, after using a Bayesian approach to 

estimate child mortality, the relationship between these two variables improves 

substantially. Visually, it is much clearer in Figure 18 than Figure 11 that municipalities 

with lower education have higher mortality levels and municipalities with higher 

education have lower mortality levels. In addition, the correlation coefficient is much 

larger using Bayesian vs. crude estimates of child mortality (-0.63 vs. -0.44). 

Again, the greatest improvement in 
∧

)5(q values occurs within municipalities with 

small samples of women. In Figure 19 the relationship between education and child 

mortality is clear, both visually and via the statistically significant correlation coefficient. 

In fact, the correlation coefficient (-0.62) for the least populated municipalities does not 



differ greatly from that seen in the previous graph for all municipalities. In contrast, in 

Figure 12 which plotted crude 
∧

)5(q values by mean female education, there was no 

significant association and the correlation coefficient value was -0.08. These findings 

indicate that using a Bayesian approach results in improvement in the reliability in 

estimates of child mortality. Finally, Figure 20 plots 
∧

)5(q values by mean female 

education for the municipalities with the 10% largest samples of women aged 20 to 29. 

Once again, there is little difference between crude and Bayesian estimates when 

examining areas with larger sample sizes (correlation coefficients of -0.62 and -0.66, 

respectively), a result of the fact that the model requires that priors have a very limited 

effect when data is abundant and stable.  

Discussion 

 

 Although the level of child mortality in Brazil has improved substantially in the 

last several decades, there has been little progress made in recent years and there is much 

work left to be done. Those working towards further reductions in child mortality for 

countries such as Brazil now advocate that to effectively combat child mortality it is 

essential that efforts be focused more on the local levels. Consequently, the construction 

of reliable estimates of child mortality for small geographical areas is necessary for these 

efforts to move forward. The purpose of this study was to present a method which would 

allow for more reliable and accurate measures of child mortality for all municipalities 

throughout Brazil.  Using a Bayesian approach that “borrows” information from 

neighboring municipalities, we have demonstrated how estimates of child mortality 

become far more stable and dependable. It is our hope and goal that these estimates (and 

this method) can be employed by those working towards improvements in child mortality 



to effectively understand how child mortality varies at the local level, eventually resulting 

in strategies that will lead towards continued improvements in child mortality rates 

throughout all areas of the country. 



Figure 1. Municipal-level UNDP child mortality rates*: Brazil, 2000.  

  
Source: UNDP 2009 

*Deaths to children under the age of 5 per 1,000 live births 



Figure 2. Municipal-level UNDP child mortality rates* by population size: Brazil, 2000. 

 

Source: UNDP 2009 

*Deaths to children under the age of 5 per 1,000 live births 



Figure 3. Municipal-level UNDP child mortality rates* by population size: Municipalities 

with the 10% smallest population sizes, Brazil, 2000. 

 
Source: UNDP 2009 

*Deaths to children under the age of 5 per 1,000 live births 



Figure 4. Municipal-level UNDP child mortality rates* by population size: Municipalities 

with the 10% largest population sizes, Brazil, 2000. 

 
Source: UNDP 2009 

*Deaths to children under the age of 5 per 1,000 live births 

 



Table 1. Measures of dispersion and correlation with education for UNDP child mortality 

rates: Brazil, 2000 
 

Range Variance 
Standard 

Deviation 

Correlation 

with education 
 

All municipalities 1.76-312.5 427.04 20.67 -0.26
**

 

Municipalities with 10% 

smallest populations 
8.55-312.5 793.75 28.17 -0.04 

Municipalities with 10% 

largest populations 
5.00-89.73 95.42 9.77 -0.37

**
 

Source: UNDP 2009 

* p<0.05   ** p<0.01 

 



Figure 5. Municipalities of Brazil. 

 

 
Source: 2000 Brazilian Census. 



Table 2. Proportion of children born to women aged 20-29 who would have died (d20-29) 

prior to age a based on the age distribution of children born to women aged 20 to 29 [c20-

29(a)] and the probability of death to children prior to age a [q(a)]. 

a  q(a) c20-29(a) d20-29 

0  0.0260 0.1059 0.0028 

1  0.0315 0.1154 0.0036 

2  0.0338 0.1071 0.0036 

3  0.0351 0.1136 0.0040 

4  0.0362 0.1030 0.0037 

5  0.0369 0.1002 0.0037 

6  0.0375 0.0834 0.0031 

7  0.0379 0.0787 0.0030 

8  0.0382 0.0619 0.0024 

9  0.0385 0.0552 0.0021 

10  0.0387 0.0335 0.0013 

11  0.0390 0.0229 0.0009 

12  0.0394 0.0093 0.0004 

13  0.0399 0.0059 0.0002 

14  0.0405 0.0024 0.0001 

15  0.0413 0.0014 0.0001 

16  0.0423 0.0002 0.0000 

17  0.0435 0.0000 0.0000 

18  0.0448 0.0000 0.0000 

  Σc20-29(a) = 1.00 Σd20-29 = 0.0350 

Sources: DHS 1996; IBGE  
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Figure 7. Municipal-level crude estimates of child mortality: Brazil, 2000. 

 
Source: 2000 Brazilian Census  
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Table 3. Descriptive statistics for municipal-level crude estimates of child mortality: 

Brazil, 2000 

 Regions 

 

 North 

 

(n=432) 

Northeast 

 

(n=1,746) 

Southeast 

 

(n=1,485) 

South 

 

(n=905) 

Center 

West 

(n=403) 

Brazil 

 

(n=4,971) 
 

Mean 0.042 0.062 0.032 0.031 0.034 
 

0.043 

Median 0.037 0.057 0.027 0.024 0.029 0.036 

Minimum 0.001 0.004 0.001 0.002 0.002 0.001 

Maximum  0.179  0.255 0.258 0.274 0.167 0.274 

Variance 0.00057 0.00088 0.00049 0.00066 0.00050 0.00086 

Standard 

Deviation 
0.024 0.030 0.022 0.026 0.022 0.029 

       

Missing 17 40 180 254 43 534 

Source: 2000 Brazilian Census  
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Figure 8. Municipal-level crude estimates of child mortality by sample of women aged 20 

to 29: Brazil, 2000. 

 
Source: 2000 Brazilian Census  
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Figure 9. Municipal-level crude estimates of child mortality by sample of women aged 20 

to 29: Municipalities with the 10% smallest sample sizes, Brazil, 2000. 

 
Source: 2000 Brazilian Census  
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Figure 10. Municipal-level crude estimates of child mortality by sample of women aged 

20 to 29: Municipalities with the 10% largest sample sizes, Brazil, 2000.  

 
Source: 2000 Brazilian Census 

 

< 
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Figure 11. Municipal-level crude estimates of child mortality by mean years of schooling 

of women aged 25 and above: Brazil, 2000. 

 
Source: 2000 Brazilian Census  

 

 

< 
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Figure 12. Municipal-level crude estimates of child mortality by mean years of schooling 

of women aged 25 and above: Municipalities with the 10% smallest sample sizes, Brazil, 

2000. 

 
Source: 2000 Brazilian Census  

 

< 
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Figure 13. Municipal-level crude estimates of child mortality by mean years of schooling 

of women aged 25 and above: Municipalities with the 10% largest sample sizes, Brazil, 

2000. 

 

Source: 2000 Brazilian Census  

 

< 
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Figure 14. Municipal-level Bayesian estimates of child mortality: Brazil, 2000. 

 
Source: 2000 Brazilian Census  
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Table 4. Descriptive statistics for municipal-level Bayesian estimates of child mortality: 

Brazil, 2000 

 Regions 

 

 North 

 

(n=449) 

Northeast 

 

(n=1,786) 

Southeast 

 

(n=1,665) 

South 

 

(n=1,159) 

Center 

West 

(n=446) 

 

Brazil 

 

(n=5,505) 

 

Mean 0.041 0.061 0.029 0.025 0.031 0.040 

Median 0.039 0.058 0.027 0.024 0.030 0.033 

Minimum 0.019 0.023 0.014 0.013 0.017 0.013 

Maximum 0.100 0.202 0.106 0.078 0.059 0.202 

Variance 0.00012 0.00033 0.00008 0.00004 0.00005 0.00039 

Standard 

Deviation 
0.011 0.018 0.009 0.007 0.007 0.020 

       

Missing 0 0 0 0 0 0 

Source: 2000 Brazilian Census  
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Figure 15. Municipal-level Bayesian estimates of child mortality by sample of women 

aged 20 to 29: Brazil, 2000.  

 
Source: 2000 Brazilian Census  
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Figure 16. Municipal-level Bayesian estimates of child mortality by sample of women 

aged 20 to 29: Municipalities with the 10% smallest sample sizes, Brazil, 2000.  

 
Source: 2000 Brazilian Census  

 

< 
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Figure 17. Municipal-level Bayesian estimates of child mortality by sample of women 

aged 20 to 29: Municipalities with the 10% largest sample sizes, Brazil, 2000.  

 
Source: 2000 Brazilian Census 

 

< 
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Figure 18. Municipal-level Bayesian estimates of child mortality by mean years of 

schooling of women aged 25 and above: Brazil, 2000. 

 
Source: 2000 Brazilian Census  

 

< 
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Figure 19. Municipal-level Bayesian estimates of child mortality by mean years of 

schooling of women aged 25 and above: Municipalities with the 10% smallest sample 

sizes, Brazil, 2000. 

 
Source: 2000 Brazilian Census  

 

< 
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Figure 20. Municipal-level Bayesian estimates of child mortality by mean years of 

schooling of women aged 25 and above: Municipalities with the 10% largest sample 

sizes, Brazil, 2000. 

 

Source: 2000 Brazilian Census  
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