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Introduction  

Traditional (demographic) description of changes in individual health status is performed using 
continuous time random Markov process with finite number of states, and age dependent transition 
intensity functions (transitions rates). Although such a description of the health process plays an 
important role in understanding connection between health and mortality it did not allow for studying 
factors and mechanisms involved in aging related decline in health/well-being/survival status. 
Numerous epidemiological studies provide compelling evidence that health transitions rates are 
influenced by a number of variables. Some of them are fixed at the time of birth (e.g., genetic 
background). Others experience stochastic changes over the life course. The latter include 
physiological state, medical cost, behavioral, or social-economical factors, etc. The presence of such 
randomly changing influential factors violates Markov assumption, and makes the description of aging 
related changes in health status more complicated.  
 
The dynamics of such influential factors (e.g. physiological variables) in connection with mortality 
risks has been described using stochastic process model of human mortality and aging (Woodbury 
and Manton, 1977). Recent extensions of this model have been used in the analyses of longitudinal 
data on aging, health, and longevity, collected in the Framingham Heart Study (Yashin et al., 2007; 
2008; Arbeev at al., 2009). This model and its extensions enjoyed Markov property of stochastic 
process satisfying diffusion type stochastic differential equation. The stochastic process is stopped at 
random time associated with individual’s death. The quadratic hazard assumption about the form of 
conditional mortality, given covariates values and certain regularity conditions, guarantee Gaussian 
property of conditional distribution of the covariates values at any given age. This allowed for 
description of aging related changes in terms of two first moments of multidimensional Gaussian 
distribution. When individual’s health status is taken into account the coefficients of stochastic 
differential equations become dependent from values of jumping process. This dependence violates 
Markov assumption and makes conditional Gaussian property not valid. So the description of this 
(continuously changing) component of aging related changes in the body also becomes more 
complicated.  
 
Since studying age trajectories of physiological state in connection with changes in health status 
would provide more realistic scenario for analyses of available longitudinal data it would be a good 
idea to find an appropriate description of these two interdependent processes developing in aging 
organism. For this purpose we suggest a comprehensive model of human aging, health and mortality 
where Markov assumption is fulfilled for the stochastic process consisting of jumping and 
continuously changing components. The jumping component is used for description of relatively fast 
changes in health status, and continuous component describes relatively slow age-dynamics of 
individual physiological state.  
 

The Model  

Let 0t tθ , ≥  be the finite-state (jumping) stochastic process (i.e., 1 2t { M}θ ∈ , ,..., , where M  is the 

number of states) and 0tY t, ≥  be K − dimensional stochastic process with continuous components 

describing joint evolution of individual health/well-being status and physiological variables over age. 

We assume that tY  satisfies a stochastic differential equation with coefficients depending on tθ :  
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Here ( )
t tA Y tθ ,  is a vector function, ( )

t
B tθ  is a matrix of respective dimension, 

0t
Y  is a random vector 

of initial conditions, and tW  is a vector Wiener process with independent components which is 



independent from initial value, 
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Y .  

 

The finite state continuous time process tθ , describing jumping changes in health/well-being status is 

characterized by conditional transition intensity matrix 
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Let T  be non-negative random variable, describing life span. Its distribution characterizes variability 
in life span among individuals in human cohorts representing longitudinal data. Individual’s death at 

time T means that the trajectories of tθ  and tY  are stopped at time T .  The conditional distribution of 

T  given trajectories of uθ , 0uY u t, ≤ ≤  is completely characterized by the conditional hazard 

(mortality) rate ( )
t tY tθµ , .  

 
The use of stochastic differential equations for random continuously changing covariates has been 
studied intensively in the analysis of longitudinal data (Yashin et al., 2007; 2008; Arbeev et al. 2009, 
and references therein). Such description is convenient since it captures a feedback mechanism 
typical of biological systems reflecting regular aging related changes and takes into account the 
presence of random noise affecting individual trajectories. It also captures dynamic connection 
between health and physiological states, which is important in many applications.  

Survival analysis using model of human aging, health, and mortality 

Let 1 2 NT T T, , ...,  be life span data on N  individuals, which health status and physiological state are 

described by the processes tθ  and tY . The likelihood function of these data is:  
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Here ( )( ) ( )
t tt E Y t T tθµ µ= , > , and iδ  is censoring variable. The likelihood function (2) has to be 

maximized with respect to parameters describing total mortality rate, ( )tµ . Since these parameters 

are involved in characterization of the process t tYθ ,  and probability distribution of T , their 

interpretation has biological and physiological sense.  

Nonlinear partial differential equation for conditional p.d.f./probability. 

To calculate ( )tµ  one needs ( )( ) t ty
f y j t P Y y j T tθ∂

∂, = ≤ , = >  which is the joint conditional 

probability density function, p.d.f. with respect to tY , and the probability with respect to tθ , given 

{ }T t> . Using standard Bayesian arguments similar to that used in Yashin et al. (1985, 1994) the 

following partial differential equation for this function can be derived:  
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Here functions ( )jA y t, , and ( )jB t  are defined in (1). Since ( )f y j t,  multiplies ( )tµ  in (2), this 

equation is nonlinear partial differential equation with respect to ( )f y j t, . The total mortality rate 

( )tµ  can also be represented as follows:  
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where ( ) ( )j tt P j T tπ θ= = > , and  
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To calculate (4) and (5) one needs ( ) ( )j tt P j T tπ θ= = >  and conditional p.d.f., 

( )( ) t tf y j t P Y y j T t yθ, = ∂ ≤ = , > /∂  for each 0t ≥ . Equation for ( )j tπ  can be derived by 

integrating ( )f y j t,  in (3) with respect to y :  
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Here ( )tµ  and ( )
j
tµ  are given by (4) and (5), and ( )ij tλ  is defined as follows:  
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Integration in (5) and (7) requires ( )( ) 1 2j
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Equation for ( )( ) t tf y j t P Y y j T t yθ, = ∂ ≤ = , > /∂  follows from equations (3) and (6):  
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Note that (6) and (8) is a system of nonlinear (partial and ordinary) differential equations.  

Gaussian Approximation  

To solve equations (7) and (9) the functional forms for the coefficient, ( )
t tA Y tθ ,  in (1) and (3) the 

elements of conditional transition intensities matrix ( )k r tY tλ , , , as well as for conditional mortality rate 

( )
t tY tθµ ,  have to be specified, and respective integrations have to be performed to get ( )tµ , ( )

j
tµ  

and ( )ij tλ . It is convenient and epidemiologically justified to describe such functions as quadratic 

forms of variable tY :  
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Here ( )kr tΛ  and ( )jQ t , are symmetric non-negative-definite K xK  matrices, ( )
t

f tθ  is a K -vector 

functions 0 ( )kr tλ  and 0 ( )r tµ  are parametric functions of t  for k, r, j = 1, 2,…,M; 0t t≥ . The includes 

negative feedback loops, which allow for maintaining organisms’ functioning. It is convenient to 
describe mechanism of physiological regulation in the presence of external disturbances in terms of 
linear stochastic differential equation:  
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Here ( )
t

a tθ  is a vector function, ( )
t

B tθ  is a matrix of respective dimension, 0Y  is a random vector of 

initial conditions, and tW  is a vector Wiener process with independent components, which is 

independent from initial value, 0Y . The components of vector function 1 ( )t
f tθ  characterize the effects 

of allostatic adaptation on physiological state (Yashin et al, 2007; 2008).  



 

Conditions (10) and (11) together with the assumptions about normality of the distribution for 
0t

Y  

guaranteed Gaussian property of conditional probability distribution of the process tY  among 

survivors in the absence of jumping process (Yashin 1985; Yashin and Manton, 1997). The presence 

of jumping process tθ  affecting the structure of the equation (11) for tY , and hence its age dynamics 

violates Gaussian property. However, the quadratic forms for conditional transition intensity functions 
and mortality rates and linear structure of (11) suggests the possibility for using Gaussian 

approximation of the conditional p.d.f. ( )( ) t tf y j t P Y y j T t yθ, = ∂ ≤ = , > /∂ .  

 

The conditional hazard (mortality rate) given health status t jθ = ,  and unconditional transition 

intensity functions can be represented as follows:  
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These conditional moments satisfy the following ordinary differential equations (for brevity we omit 
dependence from t  in all variables below):  
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Here ( )ij tλ  is given by (14), ij i jm m m= − , "hat" variables are defined as ˆ
j jj
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Note that the likelihood function (2) becomes a function of parameters determining dynamic 
properties of equations (6), (14), and (15). The fact that all these parameters have clear biological 
interpretation is an important advantage of our model compared to other parametric models of 
mortality used in demographic applications. There is a price for having proper interpretation, however: 
the equations (6), (14), (15) do not have explicit analytical solution. Therefore they have to be solved 
numerically at each step of the likelihood maximization procedure.  

Observational plans 

#1. When continuous variables are observed in discrete times 

Let us assume now that continuously changing variables are measured at age points 
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the conditional probability of having health/well-being status j  , given 0

t
Y% , { }T t> . Let  
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The evolution of ( )j tπ%  and ( )0( ) t
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∂, = ≤ , = , >% %  starts at age 0t , and continues at 

the intervals 0 1 1 2 1n nt t t t t t t t t t T−≤ < ; ≤ < ;...; ≤ < ; < . At each such interval these functions satisfy the 

equations (6) and (8).  
 

An important property of the age trajectories of ( )j tπ%  and ( )f y j t,%  is that they both will experience 

jumps at the observation times 1 2 n nt t t t t T, , ... , < ≤ :  
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respectively. Here ( )0( )
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measurements of continuously changing component, plus survival data. The first part of likelihood 
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Gaussian approximation of ( )f y j t,%  in case of observational plan #1. In case of quadratic 

mortality risk, quadratic transition intensity functions, and linear equations for tY  the likelihood 

function (19) can be represented as follows:  
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where 0( )t tYµ ,% %  is defined above, and 0( )
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The transition intensities 0( )
t

kj tYλ ,% %  in equations (6) for ( )j tπ%  are:  
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Note that using index i  in i
kπ% , i

m%  and 
iγ%  in these equations is needed because the values of these 

estimates depend on individual histories of the process tY  observed in discrete times. Here iδ  is a 

censoring indicator, K  is the dimension of vector tY , ( )im t  and ( )i tγ  satisfy equations (14) and (15) 
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The conditions (18) can now be represented in the form:  
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( )
i

j i tt Ym =%  and ( ) 0ij
tγ =% . The dynamics of ( )j tπ%  follows the equation (6) with 0( )
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instead of ( )kj tλ  at the intervals 0 1 1 2 1n nt t t t t t t t t t T−≤ < ; ≤ < ;...; ≤ < ; < . Note that the initial values of 

( )j tπ%  at the beginning of 
thi  interval 1[ )i it t t +≤ <  are given by the relationship which involves values 

of ( )j itπ −% , ( )j itm −%  and ( )ij
tγ −%  which are the solution of the equations (6), (14), and (15) at the end 

of the interval 1[ )i it t t− ≤ < .  

#2. Measuring changes in health state. No measurements of physiological state 
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This equation has to be solved at the intervals 1 2 2 3[ ) [ ) [ )m Tτ τ τ τ τ, , , , ...., , , i.e., between subsequent 

jumps of the process tθ . To avoid multiple hierarchical indexing we will use notation ( )t tθ θ≡ . The 

initial conditions at the beginning of each interval are  

 
( ) ( )

( ) ( )

( )
( ) ( )

( )

p p

p p

p p

p

p

y
y yf f

θ τ θ τ

τ τ
θ τ θ τ

λ τ

λ τ
− ,

−
− ,

,
=% % )  (24) 

Here  

 ( ) ( ) ( ) 0 ( )( ) ( ) p

p p p pp x t p p xE Y T
τ

θ τ θ τ θ τ θ τλ τ λ τ θ τ
 −
 
 − , − , =
 

= , , >
)

 (25) 



 
The likelihood function of the data on health transitions: observational plan #2. The part of the 
likelihood, corresponding to the Medicare data on ages of change in the health status (age at onset of 

diseases) for the i-th individual with ( )m i  changes in the health status happened at the time points 

1 2 ( )

i i i

m iτ τ τ, , .... , and death (censoring) happened at age iT  is:  

 

1

( )

1 2 ( ) ( ) ( ) ( )
0 1 ( )

( ) ( (0)) ( ) exp ( )

i
p

i i i i i
p p

ii
p

tm i M
i i i i i

i m i i p t k
p k k tt

L T p t t
θ τ θ τ θ

θ

τ τ τ θ λ λ
−

− , − ,
= = , ≠ −

 
, ,.... , = − + 

 
∑∏ ∫

) )
 

 }
( )

( )

( ) ( ) ( ) ( )
1 ( )

( )) ( ) exp ( ) ( )
i

i
i i i i i

m i
ii

m i

T M

it t k t
k k tt

t dt T t t dt
δ

θ θ τ θ θ
θ

µ µ λ µ
− − , −

= , ≠ −

   
+ × − +   

   
∑∫

)) ) )
 (26) 

 

Here ( (0))ip θ  is the initial distribution of the health status, and 0 0iτ =  by definition.  

Gaussian approximation in case of observational plan #2. Since health transitions are observed 

equations for the first two moments are simplified ( tj θ −= ).  
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These equations has to be solved at the intervals 1 2 2 3[ ) [ ) [ )m Tτ τ τ τ τ, , , , ...., , , i.e., between subsequent 

jumps of the process tθ . When ( )p kθ τ − =  and ( )i
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Simulation Studies  

The case of one discrete state 

We simulated data using description of the FHS. Each individual is characterized by a covariate tY , 

which dynamics is described by the stochastic differential equations (11). For each individual we 
simulated two-year survival using the quadratic hazardmodel (10). We assumed: i) time 

independence of a , b , and Q  ii) linear age dependence of parameters f  and 1f , and iii) Gompetz 

type function for 0µ . We applied this model to the FHS data and estimated nine parameters. Then we 

used these parameters for data generation in the simulation study. Using these true parameters we 

simulated 40 datasets each included 50 year follow-up and longitudinal measurements of tY  with 

82,000 person-years totally. Then, each simulated dataset was used to estimate the model 



parameters. The true values for all nine parameters are shown in Table 1 together with characteristics 
of empirical distributions for each estimated parameter obtained in 40 simulation/estimation studies.  
 
Table 1. The results of the simulation experiment with 40 datasets  
 

 
af   1f a   5

0 10µ ×  a  f  
1f  θ  510Q ×  b   

true 0.000  -0.300  1.000  -0.100  80  95  0.100  1.000  5.00  

mean -0.017  -0.295  0.940  -0.098  80.67  93.58  0.099  1.001  4.94  

SD  0.087  0.049  0.485  0.014  4.36  10.25  0.017  0.125  0.38  

SE  0.014  0.008  0.077  0.002  0.69  1.62  0.003  0.020  0.06  

 

The case of two states 

In the second pilot study, we also used the design of the FHS. We assumed that each individual 
could be characterized by continuously changing physiological indices and be in one of two (healthy 
or unhealthy) discrete states. Three hazards describing transitions from healthy to unhealthy states 

( 0i = ), from healthy state to death ( 1i = ), and from unhealthy state to death ( 2i = ) are modeled as 
2( ) exp( ) exp( )( )j j i iY iY iYt Y t t Y fµ µ θ µ θ, = + − .  

 
Table 2. The results of the simulation experiment with 100 datasets (SE=SD/10)  
 

 
0µ   1µ   2µ   0θ   1θ   2θ   0Yµ   1Yµ   2Yµ   0Yθ   1Yθ   2Yθ   0Yf   1Yf   2Yf    

 10
4−
 10

5−
 10

5−
 10

2−
 10

1−
 10

1−
 10

5−
 10

6−
 10

6−
 10

2−
 10

2−
 10

2−
    

true  1.00  2.00  4.00  5.00  1.00  1.00  1.00  2.00  2.00  5.00  5.00  5.00  80.0  80.0  80.0  
mean  1.15  2.07  4.12  5.33  1.00  1.00  1.02  2.24  2.27  4.99  4.96  5.22  80.0  79.9  79.9  
SD  1.21  0.81  1.30  1.50  0.01  0.01  0.14  1.07  1.72  0.28  0.92  1.21  0.24  0.84  1.44  

Simulating a cohort for observational plan #1 

Figure 1 provides basic characteristics of simulated cohorts vs age.  
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The following set of parameters was used: Ha =-0.05, Da =-0.03, 

2

Hb =10, 
2

Db =15, 1Hf =80, 1Df =65, 

0Hµ =0.00002, Hθ =0.08, 0Dµ =0.002, Dθ =0.045, HQ =0.00001, DQ =0.00007, HDΛ =0.00005, 

0HDλ =0.00005, HDθ =0.065, Hf =80, Df =80, and Hg =72.  Then we performed simulation of 10 

cohorts using these parameters. For each cohort we reconstructed 8 parameters presented in Table 
3. These parameters are responsible for the shape of dynamic trajectories of the covariate in healthe 



and disease states and for mortality from these states.  
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