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Abstract. We introduce a new class of models in which demo-
graphic behavior such as fertility is postponed by differing amounts
depending only on cohort membership. We show how this model
fits into a general framework of period and cohort postponement
that includes the existing models in the literature, notably those of
Bongaarts and Feeney and Kohler and Philipov. The cohort-based
model shows the effects of cohort shifts on period fertility measures
and provides an accompanying tempo-adjusted measure of period
total fertility in the absence of observed shifts. Simulation reveals
that when postponement is governed by cohorts, the cohort-based
indicator outperforms the Bongaarts and Feeney model that is now
in widespread use.

1. Introduction

One way to view much of the demographic change that is taking
place in advanced societies is as a result of the changing meaning of
age. One often hears that 40 is the new 30, or even 80 is the new
60. Demographers have developed formal models to show that shifting
age-schedules (or equivalently, shifting meanings of age) can produce
dramatic changes in cross-sectional period measures. Most notably,
Bongaarts and Feeney’s paper on fertility postponement, and their in-
troduction of a “tempo-adjusted Total Fertility Rate” have become a
fundamental part of the modern demographic toolkit.

The transformation of the human life cycle is a process that takes
place within individual lives and is thus most naturally conceptualized
as a cohort process. The magic of the Bongaarts and Feeney “tempo
adjustment” is that only period data is needed. This is because post-
ponement is modeled in period manner, with all ages (and thus all
cohorts) postponing their events (or changing their clocks) in the same
manner in a given year. This rate of change can change from period
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to period, but all cohorts must be treated the same. An enormous ad-
vantage of this approach – apart from any degree of realism it may or
may not have – is that it produces a wonderfully simple mathematical
model, in which changes in period mean ages completely determine the
presence and extent of tempo effects.

Criticisms have been leveled at the Bongaarts and Feeney approach.
Notably, a number of authors have stated that the uniform postpone-
ment across all ages is unrealistic (...). However, few authors have
shown the consequences of departure from this assumption, or have
even proposed alternatives. Zeng Yi and Kenneth Land have shown,
using a set of simulations, that violations of the uniform postpone-
ment by age assumption matter relatively little. Kohler and Philipov
proposed a major extension to the B&F, giving a fairly general frame-
work for age and time varying postponement, and offering a special
case in which postponement differed linearly by age within any period.
The Kohler and Philipov results have not been widely used, in part be-
cause the paper is complex, but also because the estimation procedures
needed are not thought to be particularly robust to random influences.

In this paper, we offer a conceptually simple alternative to the period-
paramount view of postponement. Rather than uniform postponement
by age within each period, we present a model in which there is uniform
postponement in each cohort. Rodriguez (2006) provides inspiration
by showing the relationship between these two views in the special case
of linear shifts – that is when the rate of postponement (be it period or
cohort) is unchanging over time. A simple version of our approach cov-
ers any trajectory of cohort postponement, with the important caveat
that the same shift applies to all ages within a cohort. However, the
model can readily be extended to include both variation in postpone-
ment by age within each cohort and also period effects on the level
(“quantum”) of fertility which introduce variable cohort quantum.

We begin by presenting the cohort shift model in a simple form
without any quantum effects. Then, we include variation in the shape
of cohort schedules by allowing period quantum to vary. Finally, we
introduce a general model of postponement, which allows us to see
how the cohort models, and the other models in the literature fit into
a common framework.

2. Models of cohort postponement

Denote the fertility rate at age a and time t by f(a, t). The fertility
at age a of the cohort born at time c will be denoted with a subscript
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fc(a). Translation from period to cohort is made using the fact that
t = c+ a, and so f(a, c+ a) = fc(a) and ft−a(a) = f(a, t).

2.1. The cohort shift model. In general, shifts in timing could vary
by cohort and age, such that

fc(a) = f0(a− S(a, c)),

where f0 is a standard baseline schedule that would have occurred
without postponement and S(a, c) is the “shift”, which can vary by
cohort and by age. For example, if “40” were the new “30” for the
cohort of 1960, then S(40, 1960) = 10.

However, a basic model of cohort postponement, which is still quite
flexible in that it allows each cohort to postpone by a different amount,
assumes uniform age-shifts:

fc(a) = f0(a− S(c)),

By definition the cohort total fertility rate (CTFR) is

CTFRc =

∫
fc(a)da.

where the unspecified limits of integration span all possible ages (this
convention will be used throughout). Shifts within a cohort should
not change the CTFR, and indeed we can see that this is the case.
Replacing fc(a) with f0(a−S(c)) gives us CTFRc =

∫
f0(a−S(c))da.

We evaluate this integral using the change of variables w = a−S(c) to
get

CTFRc =

∫
f0(w)dw = CTFR0.

The period TFR is influenced by the extent of cohort shifts. Writing

TFR(t) =

∫
f(a, t)da =

∫
f0(a− S(c+ a))da

one can see that the sum of period fertility will depend on S(c + a)
Intuitively, this is because in the age-schedule in a given period will
depend on the history of cohort shifts. The degree to which the period
TFR is influenced by cohort shifts will now be seen.

Define a shift-adjusted period Total Fertility Rate, denoted by TFR†(t),
as
∫
f(a, t)(1 +S ′(c))da, where S ′(c) is the derivative of the shift func-

tion with respect to cohort. The reason for this definition is made
apparent by the following calculation. First observe that replacing c
with t− a in the equation f(a, c+ a) = f0(a− S(c)) gives

f0(a− S(t− a)) = f(a, t).
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Thus

TFR†(t) =

∫
f(a, t)(1 +S ′(c))da =

∫
f0(a−S(t− a)(1 +S ′(t− a))da

and by setting w equal to a− S(t− a) we change variables to get

TFR†(t)

∫
f0(w)dw

which is the period total fertility rate of the baseline schedule, TFR(0).
Thus shift-adjusted TFR†(t) recaptures the period TFR that would
have been observed in the absence of cohort shifts.

The reason that the definition works is because the age-shifts from
cohort-to-cohort are recapitulated in the cross-section from age-to-age.
Increasing postponement effectively speeds up the clocks of those in a
synthetic cohort within a given period. Likewise, slowing postponement
means that the synthetic cohort within a given period will have more
exposure at a given fertility rate. The neat thing about our adjustment
is that rather than inflating or deflating the time spent at each age, we
inflate or deflate the rate in a way that exactly compensates for the
compression or extension of age introduced by the cohort shifts.

2.2. The cohort shift model with period quantum. Including
period effects on the level of fertility within the cohort shift model is
straightforward. We denote the period effect by q(t) so that

f(a, t) = ft−a(a)q(t) = f0(a− S(t− a))q(t).

Note that the period level effect here is invariant by age, and that the
cohort shift effect is invariant by period.

Under this model the Cohort Total Fertility Rate depends on the
history of period effects. CTFRc =

∫
fc(a)q(c + a)da =

∫
f0(a −

S(c))q(c+ a)da.
Using this model we can still define

TFR†(t) =

∫
f(a, t)(1 + S ′(c))da,

however its meaning has changed somewhat. There is no longer a
single cohort TFR that is being recovered; instead TFR† representing
a hypothetical cohort exposed to constant level effects of magnitude
q(t) over its entire reproductive span. In this way, it is bit like the
B-F or K-P measures, except that it is measuring the absence of a
long history of cohort postponement rather than only the absence of a
recent history of period postponement. The adjusted rate can perhaps
be thought of as a pure period measure of quantum one obtains after
cohort age shifts are taken into account.
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2.3. Some simple examples.

Estimation and application of the cohort shift model can be done by
estimating S ′(c) from data. However there are choices for S(c) which
give insight into the consequences of the of the cohort shift model. The
following examples are useful to illustrate these consequences.

Example 1: Linear shifts
Following Rodriguez ..., let S ′(c) be a constant k. In this case, TFR†

is (1 + k) times the observed TFR. Since the fertility schedule f(a, t)
is f0(a− kt), period fertility is shifted but its shape is unchanged, and
so the BF formula, TFR∗ = TFR/(1−µ′) is also applicable. It follows
that TFR/(1− µ′) = TFR(1 + k) and so

k =
µ′

1− µ′
,

which is the result obtain by Zeng and Land letting r∗ = k and r = µ′.

Example 2: Piecewise linear shifts
The above example generalizes naturally to a situation where the

cohort shifts are piecewise linear. Suppose S ′(c) is the constant k1 prior
to cohort c1 and the constant k2 from cohort c1 on. Then TFR†(t) is
given by

(1 + k2)

∫ t−c1

0

f(a, t)da + (1 + k1)

∫ ∞
t−c1

f(a, t)da.

Notice that any given time period has only one mean age µ(t), so
that the Bongaarts Feeney adjustment factor (1− µ′(t)), which works
nicely for linear shifts, does not lend itself to a piecewise linear scenario.

Example 3: Polynomial shifts
Now consider the case that S(c) is a polynomial in c. It is particularly

interesting to center this polynomial at −µ(t) so that our cohort of
interest is the one currently at the mean age of childbearing. So we
can write S(c) =

∑n
0 bi(c + µ(t))i =

∑n
0 bi(t − (a − µ(t))i where the

coefficients bi are constants. If our polynomial is quadratic then

TFR†(t) =

∫
(1+b1+2b2t−2b2(a−µ(t)))f(a, t)da = (1+b1+2b2t)TFR(t)

since the term 2b2(a− µ(t)) integrates to zero.
If the polynomial is cubic then TFR†(t) is∫
(1+b1+2b2t−2b2(a−µ(t))+3b3(t

2−2t(a−µ(t)+(a−µ(t))2))f(a, t)da
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= (1 + b1 + 2b2t+ 3b3(t
2 + σ2(t)))TFR(t)

where σ2(t) is the variance of the schedule f(a, t) with respect to a.
For polynomials of arbitrary degree we can use an approach that will

work for any analytic function. Let G(a) = S ′(t− a) and expand G in
a Taylor series about µ(t). Then

TFR†(t) =

∫
(1 +G(a))f(a, t)da =

TFR(t)(1 + S ′(t− µ(t)) +
∑
n=2

(−1)n
S(n+1)(t− µ(t))

n!
K(t)n

where K(t)n is the centralized nth moment of the fertility schedule
f(a, t). If we expect the higher moments to be small, then we can use
the following approximation

TFR†(t) ∼= (1 + S ′(t− µ(t)) + S ′′′(t− µ(t))σ2/2)TFR(t).

2.4. An even more general model of cohort postponement that
includes B-F, and K-P. Here, we present a general model of time
and age shifts. The idea behind the general model is to define a func-
tion u(a, t) that gives the incremental increase in postponement at age
a and time t. This, in combination with knowledge of the initial post-
ponement of each cohort, allows a full description of any shift function
S(a, c) on the Lexis surface.1 We first describe this model and then
show how it encompasses the models in the literature to date, notably
that of Bongaarts and Feeney, Kohler and Philipov, and the cohort
shift models presented above.2

Let u(a, t) be the incremental increase in postponement at age a and
time t. Define the cumulative postponement for cohort c by

S(a, c) =

∫ a

0

u(x, x+ c)dx+ S(0, c).

where S(0, c) is the “initial postponement” of cohort c. Note that
partial derivative Sa(a, c) is u(a, a + c) and Sc(a, c) =

∫ a
0
ut(x, x +

c)dx+ Sc(0, c).

1Further generalization could proceed by adding quantum terms, and even fur-
ther generalization could treat each value S(a, c) as the mean of some random
variable, and even further, further generalization could consider population mixing
of distinct homogeneous populations.

2The way we conceive of postponement is as a kind of time and clock shifts. In
order to avoid problems of shifts occurring to births that have already occurred
and other logical inconsistencies, it is convenient to first allow time and age to shift
as specified by the the S(a, c) function and then simply remap take a pre-assigned
surface of births B(a, c) and move them accordingly.
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To show how observed period values relate to the baseline cohort
schedule, let F0(a) =

∫ a
0
f0(x)dx be the cumulative fertility for the

baseline cohort. Following Rodriguez, let F (a, c) = F0(a − S(a, c)) be
the cumulative fertility for cohort c at age a. The observed fertility rate
f(a, t) is then obtained by differentiating F0(a − S(a, c)) with respect
to a and then replacing c with t − a to get f(a, t) = f0(a − S(a, t −
a))(1−Sa(a, t−a)). The definition of TFR† that recovers the baseline
schedule is

TFR†(t) =

∫
f(a, t)

(1− Sa(a, t− a) + Sc(a, t− a))

1− Sa(a, t− a)
da.

Notice that we can rewrite this expression by replacing f(a, t) with
f0(a− S(a, t− a))(1− Sa(a, t− a)) to get∫

f0(a− S(a, t− a)(1− Sa(a, t− a) + Sc(a, t− a))da.

Next we set w equal to a − S(a, t − a) and change variables to get∫
f0(w)dw which once again makes TFR†(t) equal to the baseline total

fertility rate.
We now consider various examples of this more sophisticated model.

Example 1: The model presented in the previous section is the special
case that u(a, t) = 0 and all postponement is determined by the initial
postponement S(0, c).

Example 2: Bongaarts and Feeney consider the situation in which
postponement is a function r(t) of time which does not vary with
age. This situation can be encompassed within our model by setting
u(a, t) = r′(t) and S(0, c) = r(c). Then Sc(a, t−a) will be r′(t) and we
get

TFR†(t) =

∫
f(a, t)

1− r′(t)
da =

TFR(t)

1− r′(t)
which is exactly the result obtained by Bongaarts and Feeney.

Example 3: In order to investigate the consequences of variance ef-
fects in the BF formula, Philipov and Kohler consider a scenario in
which cumulative postponement varies linearly with a. They choose a
function of the form S(a, t − a) = a − ā0 − (a − ā0 − γt)e−δt where γ
and δ are constants and ā0 is the mean of the baseline schedule f0.

Using Philipov and Kohler’s form for S(a, t−a) we find Sa(a, t−a) =
1 + e−δt(−1 + aδ − a0δ + γ − δγt), S(0, c) = a0e

−δc − a0 + γce−δc and
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Sc(a, c) = e−δt(aδ − a0δ + γ − δγt). Thus we calculate TFR†(t) as∫
f(a, t)

1− γ − δ(a− ā0 − γt)
da.

If δ = 0 then this is (1− γ)−1TFR(t). Otherwise, notice that since ā0

is the mean of the baseline schedule, it follows that

0 =

∫
(w − a0)f0(w)dw =

∫
e−δt(a− ā0 − γt)

1− γ − δ(a− ā0 − γt)
f(a, t)da.

Since δ 6= 0 then we can factor (1− γ)e−δtδ−1 out of the expression on
the right to see that

(?)

∫
a− ā0 − γt

(1− γ)(1− γ − δ(a− ā0 − γt))
f(a)da = 0.

Now via algebra we can write

TFR†(t) =

∫
f(a, t)

1− γ − δ(a− ā0 − γt)
da =

∫ [
1

1− γ
+

δ(a− ā0 − γt)
(1− γ)(1− γ − δ(a− ā0 − γt))

]
f(a, t)da.

which using equation ? above is∫
f(a, t)

1− γ
da =

1

1− γ
TFR(t)

and thus regardless of the value of δ we recover the Philipov and Kohler
formula.

3. Artifacts produced by period tempo-adjustment of
cohort postponed fertility

Here we investigate the behavior of the B-F adjustment procedure
when applied to cohort postponement (Note: one could also consider
the place in which adjustment age-invariant cohort postponement is
applied to a period postponed world).

[This important section needs to be written.]
Based on simulations, not reported here, we see that the two es-

timates differ at periods at the onset and conclusion of cohort shift
transitions. Our suspicion is that the error is a function of the third-
derivative of S(c), which is related to the rate of change in the variance
in period fertility distributions, found to be the key factor by Kohler
and Philipov.
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4. Estimation of TFR† with real data

To estimate the shift-adjusted TFR, we need separate estimates of
a baseline schedule f0(a), the shifts by cohort S(c), and the period
quantum q(t).

Using iterative calculation, all three of these quantities can at least in
theory be estimated by adding some constraints, e.g., that q(t) averages
out to 1.0. Initial estimates of the baseline schedule can be obtained
by averaging out the observed cohort fertility schedules at all ages,
including those cohorts that are truncated. Initial estimates of the
q(t) parameter can be obtained from the period TFR, appropriately
normalized.

[This section still needs to be developed and written. Our suspicion
is that the estimates of TFRdagger will not be dramatically different
than B-F’s estimates but that the cohort model will be superior in
some interesting situations, e.g., Eastern Europe.]

5. Discussion

The cohort shift model is at least an alternative formulation to the
period perspective of Bongaarts and Feeney. At best, it will prove
to be estimable and in some cases provide superior estimates of the
underlying level of fertility.

The cohort-shift model fits into a larger class of shift models, which
include all of the shift models we know of the literature to date. This
general form for shift models does not – at least to us – present a full
set of tractable analytic forms for the postponement function u(a, t).
However, it does, at least, allow us to understand how all of the dif-
ferent models to date relate to one another. In the future, it may also
lead to useful flexible formulations of u(a, t) that are both analytically
understandable and behaviorally defensible.


