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A discrete-time survival model — the complementary log-log (CLL) model — is used to model parity 

progression from woman’s own birth to first marriage, from first marriage to first birth, from first birth 
to second birth, and so on, with one model for each parity transition. In the model for any particular 
parity transition, predictor variables include duration in parity (t) and woman’s age at starting parity 
(A), as well as socioeconomic characteristics. Base data are birth histories in demographic surveys. 
 
Collectively, the models for the various parity transitions yield model-predicted estimates of birth 
probabilities by age, parity, and duration in parity, denoted Pait (where i denotes parity and a = A+t), 
by socioeconomic characteristics. The birth probabilities Pait for a particular set of values of the 
socioeconomic characteristics allow calculation of a “global life table”, the basic dimensions of which 
are age, parity, and duration in parity. Starting at age 10, women are survived through this life table 
one year at a time by age, parity, and duration in parity until they reach age 50. As in the usual 
calculation of the TFR as the sum of ASFRs, mortality is ignored in the calculation of the global life 
table. The global life table yields estimates of PPRs, ASFRs, mean and median ages at first 
marriage, mean and median closed birth intervals, mean and median ages at childbearing (both 
overall and by child’s birth order), TFR, and TMFR. (TMFR is actually a total  ever-marital fertility rate, 
but for simplicity we refer to it simply as a total marital fertility rate.) Because the Pait are multivariate, 
the global life table is also multivariate, as are all measures calculated from it. 
 
A discrete-time survival model, such as the CLL model, is applied not to the original “person sample” 
but instead to an “expanded sample” of person-year observations created from the original person 
observations. The expanded sample makes it easy to include time-varying predictor variables in the 
CLL model. For example, if a person moves from rural to urban, some of the person-year 
observations created for that person are coded as rural and some are coded as urban. The CLL 
model can also handle time-varying effects of predictor variables, by interacting socioeconomic 
variables with t or some function of t, such as t and t

2
. 

 
The CLL model handles left-censoring as well as right-censoring (Allison 1995). This enables 
application of the model to period data as well as cohort data. In our test application to Philippines 
2003 DHS data, “period” is defined as the 5-year period before survey, and “cohort” is defined as the 
earlier lifetime experience of women age 45-49 at time of survey. Previous studies have applied 
discrete-time survival models to cohort data. A major methodological innovation in our work is the 
application of the CLL model to period data. This is done by treating person-year observations 
before or after the period of interest as censored. Otherwise the application of the methodology is 
the same in the period and cohort cases. The only difference is how the expanded person-year data 
set is constructed. Our illustrative application to Philippines 2003 DHS data, which is ongoing, 
includes both period estimates and cohort estimates. 
 
In the application of the methodology to Philippines DHS data, the form of the model is basically the 
same for each parity transition, except that, in the case of transition from birth to first marriage (B-M), 
the model is truncated at 30 years of duration in parity (the difference between the beginning and 
ending ages of 10 and 40), whereas in the case of higher-order transitions (M-1, 1-2, and so on) they 
are truncated at 10 years of duration in parity. In the former case a “failure” is a first marriage, and in 
the latter case it is a next birth of specified birth order. First marriages after age 40  



and next births after 10 years duration in parity are rare and are ignored. (Other cutoffs could 
also be used, but these are appropriate for the Philippines.) Two socioeconomic predictor 
variables are included in the Philippines analysis: urban-rural residence (specified by a 
dummy variable U) and education (specified by dummy variables M and H, representing 
medium and high education with low education as the reference category), as assessed at 
time of survey. These variables are treated as time-invariant, due to the lack of information 
about their values in each earlier year before the survey.  
 
In the case of the birth-to-first marriage (B-M) transition, the underlying model is 
 

 P = 1� exp{�exp[a + b1T1 + b2T2 + ... + b29T29 + U(c+dt+et2) + M(f+gt+ht2)  
 
                                + H(j+kt+mt

2
) + nUE]}  (1) 

 
where P is the predicted value of the probability of failure (also called the discrete hazard) in 
a duration interval (failure being a first marriage in this case); T1, ..., T29 are 29 dummy 
variables representing the first 29 of 30 duration intervals; t is a counter variable (equal to 1, 
2, ..., 30) that also denotes duration interval; a is an intercept term (implying that P = 1-exp[-
exp(a)] for the 30

th
 duration interval when all predictors equal zero), and b1, ..., b29, c, d, e, f, 

g, h, j, k, m, and n are coefficients to be fitted (along with the intercept a) to the data. The 
fitting is done by maximum likelihood (Allison 1995). Although, for higher-order transitions (i.e, 
higher than B-M), the birth histories in the 2003 Philippines DHS (as in all DHS surveys) are 
specified by month, we aggregate months into years. This is done because monthly data 
sometimes result in empty cells (e.g., there are no births in the month following a previous 
birth), in which case the maximum likelihood estimation procedure for fitting the model does 
not converge to a solution. In conformity with usual DHS practice, the month of survey, being 
an incomplete month for most women, is omitted from the person-year data sets. The 5-year 
period before survey then includes the 60 previous months. 
 
In equation (1), effects of socioeconomic predictor variables are specified as time-varying. 
For example, the effect of a one-unit increase in U (from 0 to 1) — i.e., the effect of urban 
relative to rural — is to multiply the underlying continuous-time hazard of a first marriage for 
rural by exp(c+dt+et

2
), where exp(c+dt+et

2
) is the relative risk.  

 
A time-varying specification of the effect of U on the probability of first marriage is necessary 
because the effect of urban residence, relative to rural residence, is to lower the probability 
of first marriage at younger ages and increase it at older ages (because urban marriages 
tend to be postponed to later ages, relative to rural marriages). Thus the effect of urban 
residence on the risk of progression to first marriage is not constant over duration in parity; 
i.e., the effect is not proportional. Similarly, the effect of education is modeled as time-varying, 
because the effect of more education is also to lower the probability of first marriage at 
younger ages and raise it at older ages. At higher-order parity transitions, for similar reasons 
as well as other reasons, the effects of U, M, and H on the probability of next birth are also 
modeled as time-varying, again with a quadratic specification. 
 
The set of predictor variables on the right side of equation (1) also includes a term nUE, 
where E is a dummy variable representing two categories of education, with the reference 
category defined as low education and the second category defined as medium or high 
education. The 3-category specification of education is not feasible in this interaction 
because of the small number of rural women with high education, which leads to 
convergence problems when fitting the model to the data. The term nUE representing 
interaction between residence and education is needed because the effect of education on 
parity progression is likely to differ for urban women and rural women. Education is 



dichotomized only in this particular interaction term, not elsewhere in equation (1), where 
education continues to be specified in three categories as low, medium, and high.  
 
For transitions higher than birth to first marriage (B-M), the underlying model is 
 

 P = 1� exp{�exp[b0 + b1T1 + b2T2 + ... + b9T9 + A(c0 + c1 t + c2 t2) + A2(d0 + d1 t + d2 
t
2
)  
 
  + U(e0 + e1 t + e2 t

2
) + M(f0 + f1t + f2 t
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) + H(g0 + g1t + g2 t

2
) + U(h0 + h1A + h2 

A
2
)  

 
  + M(j0 + j1A + j2A

2
) + H(k0 + k1A + k2A

2
) + mUE]} (2) 

 
An A

2
 term is included as well as an A term, because the rise and fall of fecundability as age 

increases suggest that the effect of starting age on parity progression will be non-linear, and 
that a quadratic specification of starting age will adequately capture this non-linear effect. 
The effects of both A and A

2
 are specified as time-varying because the effects of A and A

2
 

on parity progression change as duration in parity increases. Not only biological influences 
(fecundability) but also behavioral influences play a role in the interpretation of the effect of 
starting age on parity progression. One example of such a behavioral influence is that 
couples are more likely to settle into a life style with few or no children the longer they delay 
marriage and childbearing. Our methodology and data do not allow separate measurement 
of these biological and behavior influences, however. 
 
Basic global life table calculation formulae relating to the B-M transition are: 
 
 S0,0,0 = 1 (3) 
 
 Sa,0,t = Sa,0,a = Sa-1,0,a-1(1-Pa-1,0,a-1)     for a > 0 (4) 
 
 fa,0,t = fa,0,a = Sa,0,a Pa,0,a (5) 
 
where Sa,0,a denotes the probability of surviving (not yet having had a first marriage) to age a, 
fa,0,a denotes the unconditional probability of a first marriage between ages a and a+1, and 
age 10 is translated to age 0 in order to simplify the notation.  
 
For higher-order parity transitions, basic formulae are: 
 

 Sa,i,0 = � (Sa,i-1,t Pa,i-1,t)   for a > 0 and where the summation is over t (6) 

 
 Sait = Sa-1,i,t-1(1-Pa-1,i,t-1)    for a > 0 and t > 0 (7) 
 
 fait = Sait Pait  (8) 
 
where fait now denotes the unconditional probability of an (i+1)

th
 birth between a and a+1 and 

between t and t+1. 
 
Once global life table values of Sait and fait have been calculated from these formulae, 
starting from the model-predicted values of Pait, it is straightforward to calculate PPRs, 
ASFRs, mean and median ages at first marriage, mean and median closed birth intervals, 
mean and median ages at childbearing (both overall and by child’s birth order), TFR, and 
TMFR.  



 
Unadjusted and adjusted estimates of TFR (or any other of the above measures) by 
categories of a predictor variable are calculated using the logic of what is sometimes referred 
to as multiple classification analysis (MCA) (Andrews, Morgan, and Sonquist 1969; 
Retherford and Choe 1993). In MCA, “unadjusted” means “without controls”, and “adjusted” 
means “with controls”.  
 
For a particular parity transition, unadjusted values of the discrete hazard function Pait by 
urban/rural residence, for example, are calculated from a CLL model that includes U as the 
sole socioeconomic predictor variable. Thus, in the case of equation (1) for the B-M transition, 
one drops terms containing M, H, or E. Values of Pait for urban are then calculated by setting 
U = 1 in the estimation equation, and values of Pait for rural are calculated by setting U = 0 in 
the estimation equation. 
 
Adjusted values of Pait by urban/rural residence for the B-M transition are calculated from 
equation (1) with all of the predictor variables U, M, and H included. Education, represented 
by M and H or by E, is viewed as the control variable. To obtain adjusted values of Pait for 
urban, one sets U = 1 and M and H (note that the value of E is determined by the values of 
M and H) equal to their interval-specific mean values in the data set to which the CLL model 
is fitted. (In this context, “interval” means duration interval; each parity transition has its own 
set of interval-specific — i.e., duration-in-parity-specific — mean values of M and H derived 
from the person-year data set for that parity transition.) To obtain adjusted values of Pait for 
rural, one sets U = 0 and M and H equal to the same interval-specific mean values that were 
used to calculate the adjusted discrete hazard function for urban. In this way M, H, and E are 
held constant or “controlled” when U is varied from 0 to 1.  
 
Unadjusted and adjusted global life tables and measures derived from them (TFR and its 
various components) are then calculated from the unadjusted and adjusted values of Pait by 
urban/rural residence. 
 
Despite the complexity of the underlying statistical models, the final tables of unadjusted and 
adjusted estimates of the above measures have a simple bivariate format that is readily 
understood by non-statisticians. The simplicity of the final tables is a major selling point for 
the methodology. 
 
Using data from the 2003 Philippines DHS, we have done some of the calculations already 
(ASFRs, PPRs, and TFRs tested on cohort data), and the results look good. Work is ongoing. 
 
Note that, because the global life table is internally consistent, TFR calculated from ASFRs 
and TFR calculated from PPRs have the same value, which is most easily calculated, 
however, as  � fait, where the summation is over a, i (except parity 0, which is omitted because failures 
are first marriages instead of births), and t. Note also that if the socioeconomic variables are 
omitted from the models, the global life table yields estimates of TFR and its components for 
the population as a whole. 
 
This research is a major extension of earlier work based on models that specify parity and 
duration in parity but not age. The earlier work did not produce estimates of ASFRs and 
mean and median ages at childbearing (both overall and by child’s birth order). A paper 
based on the earlier work (“Multivariate analysis of parity progression-based measures of the 
total fertility rate and its components”) is forthcoming in Demography. The Demography 
paper, which does not employ the global life table concept, is based on a longer working 



paper that can be downloaded at 
http://www.eastwestcenter.org/fileadmin/stored/pdfs/POPwp119.pdf.  
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