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Abstract 

Longitudinal data provide possibilities to analyze how dynamics of physiological indices impacts 

morbidity/mortality risks. We analyzed relationship between the risk of onset of “unhealthy life” 

(defined the onset of cancer, cardiovascular disease or diabetes) and longitudinal observations of 

six physiological indices: body mass index, diastolic blood pressure, hematocrit, pulse pressure, 

pulse rate, and serum cholesterol, in the Framingham Heart Study using the stochastic process 

model of aging. We evaluated that: 1) “optimal” trajectories of the physiological indices 

(minimizing the risk of onset of “unhealthy life”) are age-dependent; 2) these trajectories deviate 

from those resulting from the processes of allostatic adaptation of an organism; 3) ranges of 

“tolerable” deviations of indices from the “norm” reduce with age, i.e., U-shapes of the risk 

narrow with age. The model estimates that individuals might enjoy up to several additional years 

of healthy life if their indices followed the “optimal” age trajectories. The mechanisms 

contributing to observed results are discussed. 
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Introduction 

Longitudinal data available to date often contain limited information that can be directly 

associated with mechanisms of aging-related changes in an organism, such as homeostatic 

regulation, allostatic load, stress resistance, and so on, which, in turn, can be related to 

mortality/morbidity risks. However, such mechanisms may be mediated by age-trajectories of 

various physiological indices in an organism. Longitudinal measurements of physiological 

indices available for participants of longitudinal studies of health and longevity constitute a 

valuable source of information that can be used to reveal these mechanisms and associate them 

with risks of death or onset of chronic diseases (Arbeev et al., 2009; Yashin et al., 2006; Yashin 

et al., 2009a; Yashin et al., 2009b). Mathematical modeling may provide a useful tool to help 

reveal regularities in aging-related changes hidden in the age-dynamics of physiological indices. 

Yashin et al. (2007) suggested the stochastic model that incorporates several major concepts of 

aging known to date and that links individual trajectories of physiological indices measured in 

longitudinal data and mortality/morbidity risks. The mortality/morbidity risk is assumed to be a 

quadratic function of physiological indices capturing J- or U-shapes of the risks observed for 

many indices in different studies. 



2 

 

In this paper, we apply the model developed by Yashin et al. (2007) to analyze 

relationship between “healthy lifespan” (defined as free of cancer, cardiovascular and diabetes 

lifespan) and longitudinal observations of six physiological indices: body mass index, diastolic 

blood pressure, hematocrit, pulse pressure, pulse rate, and serum cholesterol, measured in 

participants of the Framingham Heart Study (FHS) data. The approach allows us to evaluate the 

values (or ranges of values) of physiological indices minimizing the risk of onset of “unhealthy 

life” (i.e., one of the three diseases mentioned above) and test the hypotheses whether these 

“norms” are age-dependent. It also addresses the question whether the age-trajectories of 

physiological indices which organisms are forced to follow by mechanisms of adaptive 

regulation coincide with the trajectories that minimize the risk of onset of “unhealthy life.” The 

model provides the mechanism to evaluate the “allostatic load” as a measure of difference 

between the two functions and also estimate the number of additional years of healthy life (i.e., 

free of the three diseases mentioned above) for an individual if his/her age-trajectories of 

physiological indices followed the “optimal” ones.  

Data and Method 

Framingham Heart Study (FHS). The FHS Original Cohort consists of 5,209 respondents 

(nearly all are Caucasians, 46% male) aged 28-62 years residing in Framingham, Massachusetts, 

between 1948 and 1951, and who had not yet developed overt symptoms of cardiovascular 

disease or suffered a heart attack or stroke (Dawber, 1980; Dawber et al., 1951). The study 

continues to the present with biennial examinations (29 exams to date, data from exams 1-25 

were used in this study) that include detailed medical history, physical exams, and laboratory 

tests. The FHS Original Cohort has been followed for about 60 years for the occurrence of 

cardiovascular diseases (CVD), cancer, diabetes mellitus, and death through surveillance of 

hospital admissions, death registries, and other available sources. Examination of participants, 

including an interview, physical examination, and laboratory tests, has been taken biennially. 

Phenotypic traits collected in the FHS Original Cohort over 60 years and relevant to our analyses 

include: life span, ages at onset of diseases (with the emphasis on cardiovascular diseases 

(CVD), cancer, and diabetes mellitus), as well as indices characterizing physiological state. The 

occurrence of diseases (CVD and cancer) and death has been followed through continuous 

surveillance of hospital admissions, death registries, clinical exams, and other sources, so that all 

the respective events are included in the study. We used data on onset of CVD, cancer 

(calculated from the follow-up data) and diabetes (defined as the age at the first exam when an 

individual has a value of blood glucose exceeding 140 mg/dl and/or takes insulin and/or oral 

hypoglycemic agent) to define the age at onset of “unhealthy life” as the minimum of ages at 

onset of these three diseases. If an individual did not contract any of these diseases during the 

observation period than the individual was considered censored at the age of the last follow-up or 

death. Individuals who had any of the diseases before (for cancer and CVD) or at (for diabetes) 

the first FHS exam were excluded from the analyses of “unhealthy life.” Data on physiological 

indices that we used include: body mass index (BMI, exams 1-25), diastolic blood pressure 

(DBP, exams 1-25), hematocrit (HC, exams 4-21), pulse pressure (PP, exams 1-25), pulse rate 

(PR, exams 1, 4-25), and serum cholesterol (SCH, exams 1-11, 13-15, 20, 22-25). 

Model. The model as suggested by Yashin et al. (2007) represents the dynamics of a 

physiological index (Yt, t is age) in the form of the stochastic differential equation: 

( ) ,,)()()( 01 YdWtbdttfYtadY ttt +−=    (1) 
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where Wt is a Wiener process (independent of the initial normally distributed value Y0) 

describing exogenous challenges affecting the index. The function f1(t) describes the functional 

state that organisms subject to allostasis (McEwen and Wingfield, 2003) are forced to follow by 

the process of adaptive regulation at age t (the “mean allostatic state”). The function a(t) 

characterizes the rate of adaptive regulation, i.e., the rate of the adaptive response for any 

deviation of the physiological index from the state f1(t) which an organism tends to follow. 

The hazard rate (i.e., the risk of onset of cancer, CVD or diabetes) is assumed as the 

quadratic function of Yt: 

( ) ( ) ),()()(,
2

0 tQtfYtYt tt −+= µµ     (2) 

where )(0 tµ  is the baseline hazard characterizing the risk which would remain if the index Yt 

followed the “optimal trajectory” represented by the function f(t). This “optimal” function 

corresponds to the minimal value of the hazard rate (i.e., incidence of “unhealthy life” in our 

applications) at respective age and thus represents the notion of (age-specific) physiological 

“norm” for the respective index in terms of minimizing this hazard at age t. Here Q(t) is a non-

negative-definite function representing the quadratic term in the hazard. The narrowing of the U-

shape of the risk function with age (i.e., an increase of Q(t) with t) characterizes the decline in 

stress resistance. Generally, f(t) may differ from f1(t) since the process of allostatic adaptation 

does not necessarily results in the optimal physiological state. Thus, the difference between f1(t) 

and f(t) provides the measure of the allostatic load. 

Application to FHS data. In applications of model (1)-(2) to the FHS data, we used constant 

Yata =)(  and 1)( σ=tb , linear functions (of age t) for the quadratic term in the hazard (Q(t)) and 

the age-specific physiological “norm” (f(t)): tbatQ QQ +=)(  and tbatf ff +=)( , the logistic 

(gamma-Gompertz) function for the baseline hazard: ∫+=
t

0

0

0

2

2

0

00 ))(1()()( duutt µσµµ , where 

tb
eat 0

0
)(00

µ

µµ = , and the quadratic function for the “mean allostatic 

state”:
2

1 111
)( tctbatf fff ++= f1(t). Initial value 

0t
Y  was assumed normally distributed, 

)),(( 001 σtfN . The specific choice for the baseline hazard is explained by the observations that 

the incidence rates of many aging-related diseases (e.g., such as cancer, which is used in the 

definition of onset of “unhealthy life”) decelerate at advanced ages in the literature and the 

empirical observations of the incidence rates of onset of “unhealthy life” in the Framingham 

Heart Study data (Fig. 1). Note that this general specification reduces to the exponential 

(Gompertz) hazard rate if 02 =σ  allowing for testing respective hypotheses on decelerating rates 

in the applications. The choice of the quadratic function for the “mean allostatic state” comes 

from the empirical observations of the average trajectories of the physiological indices in the 

FHS, which generally have a quadratic form (see Fig. 2), although the mean trajectories does not 

necessary have to follow those of f1(t) exactly, of course. We also estimated the model with 

linear f1(t) and the null hypothesis in favor of the linear model was rejected for all indices and 

both sexes (p<0.0001 in all cases except PR for males (p=0.004)) excluding PP for females. 

Figs. 1-2 about here 

In addition to the “basic” model described above, we estimated the model with a non-

symmetric form of Q(t), i.e., assuming different “penalties” (in terms of an additional risk) for 
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deviations of the index to the left and to the right from the “norm” f(t) (QL(t) and QR(t)). We also 

tested whether the respective indices have a single “optimal” value minimizing the risk of onset 

of “unhealthy life” at each age, or there is a range of such values with minimal risk. For this 

purpose, we estimated the models with optimal “ranges,” or  

( ) ( ) ( ) ( ) ( ) ),()()()()()()(,
22

0 tQtfYItfYtQtfYItfYtYt RLtRtLLtLtt >−+<−+= µµ  

where I(.) is an indicator function (which equals one if the condition in the parentheses holds and 

zero otherwise), fL(t) and fR(t) are two functions defining the left and right boundaries of the 

“optimal range,” which were also taken as linear or quadratic functions.  

Statistical analysis. Details of the likelihood maximization procedure are given in Yashin et al. 

(2007). The likelihood maximization was performed using the constrained optimization 

procedure of MATLAB’s optimization toolbox (MathWorks Inc., 2008). The constrained 

maximization algorithm was used to impose necessary restrictions on parameters of: a) functions 

f1(t) and f(t) (to ensure “physiologically reasonable” values of indices at each age); b) the 

feedback coefficient aY (the negative value to ensure that the trajectories of Yt tend to f1(t)); c) the 

baseline hazard )(0 tµ  (to ensure non-negative values for each age); d) variances 0σ , 1σ , and 2σ  

(to ensure non-negative values); and e) the quadratic term in the hazard Q(t) (to ensure that the 

value is non-negative for each age). Model comparison was performed using the likelihood ratio 

test for nested models and the Akaike Information Criterion (Akaike, 1974) for non-nested 

models. Hypotheses on age-dependence of functions f1(t), f(t) and Q(t), and on coincidence of 

f1(t) and f(t), and QL(t) and QR(t) were tested using the likelihood ratio test. 

Results and Discussion 

Estimates of the baseline hazard rate ( )(0 tµ ), the quadratic term in the hazard (Q(t)), the 

“mean allostatic state” (f1(t)), and the age-specific “norm” (f(t)) for six physiological indices in 

the quadratic hazard model applied to data on onset of “unhealthy life” in females and males  in 

the Framingham Heart Study (original cohort) are shown and Figs. 3-8. Estimates of parameters 

are given in Table 1. 

Figs. 3-8 about here 

Table 1 about here 

The results show that for all indices and for both sexes the estimates of parameter 2σ  are 

non-zero indicating the decelerating pattern of the baseline hazard with age (see upper left graphs 

in Figs. 3-8). Thus, our a priori expectations about the pattern of the risk of onset of “unhealthy 

life” corresponding to unspecified factors represented by )(0 tµ  are confirmed. For all indices 

and both sexes, the trajectories of the quadratic term in the hazard (Q(t)) increase with age (see 

upper right graphs in Figs. 3-8). This means that the width of the U-shape of the risk (as a 

function of respective physiological index) is getting narrower with age. This, in turn, suggests 

that the range of the values of respective physiological indices corresponding to a “tolerable” 

increase in the risk is also getting narrower with age and the “price” for the same magnitude of 

deviation from the “norm” (in terms of an absolute increase in the risk of onset of “unhealthy 

life” compared to the baseline level )(0 tµ  at that age) is higher at older ages. For all indices 

except hematocrit, the trajectory of Q(t) for males lies above that of females meaning the higher 

“price” for deviations from the norm for males. Combined with higher values of the baseline 
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hazard for males, this may partly explain the observed higher incidence rate for males (see Fig. 

1). We also checked whether the “penalties” for deviations of the index to the left and to the right 

from the “norm” f(t) are different. In all cases except DBP for males (p=0.037) the respective 

null hypotheses in favor of the simpler model were not rejected at the 0.05 level. 

For all analyzed indices and both sexes, the resulting estimates of the “mean allostatic 

state” f1(t) and the “optimal” trajectory f(t) were age-dependent (significant at 0.05 level). Age-

dependence of the “optimal” trajectory f(t) indicates that the values of an index that minimize the 

risk of onset of unhealthy life for young and middle-age adults may differ from those of old and 

oldest-old individuals. Therefore, the strategies aiming at maintaining the level of a physiological 

index at oldest ages similar to the level optimal for younger individuals may actually increase the 

risk of development of cancer, CVD or diabetes. Furthermore, the notion of the “norm” used 

here minimizes the risk of onset of any of the three diseases from the definition of “unhealthy 

life” at respective ages, and, hence, is a “compromise” measure from the disease-specific 

“norms” (which may have different patterns if a physiological index has different impact on the 

risk of different diseases). However, if the goal is to minimize the risk of onset of any of the 

three diseases rather than to minimize the risk of one disease at a possible cost of increased risks 

for other diseases, then such approach may be preferable to analyses of disease-specific data. 

Also, it may happen that the trajectory that minimizes the risk of onset of “unhealthy life” differs 

somewhat from that minimizing the risk of death. Thus, similar studies need to be performed to 

evaluate the “optimal” trajectories in terms of mortality risks and compare them with those 

evaluated here for the onset of “unhealthy life.” Therefore, the concept of physiological “norms” 

deserves careful additional studies.  

For all indices and for both sexes, the null hypotheses on coincidence of f1(t) and f(t) 

were rejected at 0.05 level. This means that the processes of compensatory adaptation and 

remodeling regulating the age dynamics of respective physiological states force the age-

trajectories of the indices to follow the curves which do not tend to minimize the risk of onset of 

“unhealthy life.” Persistent deviations from the “norm” characterize the effects of allostatic 

adaptation and the magnitudes of such deviations for each physiological index can be associated 

with components of allostatic load leading to increased chances of development of the diseases 

(if the estimates of the quadratic term in the hazard, Q(t), are not zero, which is the case in our 

applications). If one takes two individuals, the first one being a “typical person” whose age 

trajectory of some physiological index drifts along the “mean allostatic state” f1(t) and the second 

one who manages to keep his/her age trajectory at the “optimal” level corresponding to f(t), then 

the first individual will have increased chances of getting the diseases compared to the second 

one (if all other factors, i.e., those summarized in )(0 tµ , are the same). As the result, the 

“healthy life expectancy” in two individuals will be different and such a difference can be 

evaluated from the model. In case of our applications, the difference in healthy life expectancy 

reaches 6.58 years for PP in females and 3.05 years for PP in males. 

We also tested whether the respective indices have a single “optimal” value minimizing 

the risk of onset of “unhealthy life” at each age, or there is a range of such values with minimal 

risk. Although in all cases the respective null hypotheses in favor of the simpler model were not 

rejected at the 0.05, the optimal ranges fL(t) and fR(t), rather than the optimal trajectories f(t), 

were estimated for the majority of indices. In all cases where such ranges were estimated, the 

ranges narrowed with age indicating that the range of “acceptable” values of indices with 

minimal risk of onset of “unhealthy life” shrinks as an individual gets older (data not shown). 
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This can be considered as a manifestation of decline in stress resistance with age in addition to 

the observation that the respective U-shape of the risk narrows with age as discussed above.  

The limitations of the approach considered in this paper deal with the fact that it 

evaluates average effects of allostatic adaptation and average optimal functions. It would be 

useful to investigate individual dynamic effects of allostatic adaptation and individual optimal 

age trajectories of physiological indices. Such extension, however, would involve more data and 

require development of more sophisticated dynamic models describing numerous aging related 

changes in their mutual connection and their effects on mortality/morbidity risk. Also, we used a 

rather simplified assumption that the feedback coefficient a(t) is constant, whereas the adaptive 

capacity may decline with age.  

One more limitation is that the approach uses a one-dimensional description of 

physiological state. However, different physiological indices may be mutually dependent and 

evaluating the “norms” and other parameters independently may introduce a bias in estimates. 

Thus, multidimensional analysis of different indices is important. At the same time, a substantial 

deviation of some index from its one-dimensional “norm” may serve as an important indicator of 

a possible pathological development that may lead to overt symptoms of chronic diseases. 

 

Conclusions 
In conclusion, the results show that analyzes of longitudinal data using the approach 

discussed in this paper may substantially increase our knowledge on factors and mechanisms 

responsible for aging related changes in humans and help reveal the impact of age dynamics of 

physiological indices on the risk of onset of “unhealthy life.” 
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Figures: 

 

 
Fig. 1: Incidence rates of onset of “unhealthy life” (i.e., cancer, CVD, or diabetes) in females and 

males in the Framingham Heart Study (original cohort) 
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Fig. 2: Average trajectories of six physiological indices in females and males in the Framingham 

Heart Study (original cohort). Note: values of the indices measured after the onset of any of the 

three diseases defining “unhealthy life” (i.e., cancer, CVD, diabetes) are excluded from the 
calculations. 
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Fig. 3: Estimates of the baseline hazard rate ( )(0 tµ ), the quadratic term in the hazard (Q(t)), the 

“mean allostatic state,” and the age-specific “norm” of body mass index (BMI) in the quadratic 

hazard model applied to data on onset of “unhealthy life” in females (solid red lines) and males 

(dashed blue lines) in the Framingham Heart Study (original cohort) 
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Fig. 4: Estimates of the baseline hazard rate ( )(0 tµ ), the quadratic term in the hazard (Q(t)), the 

“mean allostatic state,” and the age-specific “norm” of diastolic blood pressure (DBP) in the 

quadratic hazard model applied to data on onset of “unhealthy life” in females (solid red lines) 

and males (dashed blue lines) in the Framingham Heart Study (original cohort) 
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Fig. 5: Estimates of the baseline hazard rate ( )(0 tµ ), the quadratic term in the hazard (Q(t)), the 

“mean allostatic state,” and the age-specific “norm” of hematocrit (HC) in the quadratic hazard 

model applied to data on onset of “unhealthy life” in females (solid red lines) and males (dashed 

blue lines) in the Framingham Heart Study (original cohort) 
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Fig. 6: Estimates of the baseline hazard rate ( )(0 tµ ), the quadratic term in the hazard (Q(t)), the 

“mean allostatic state,” and the age-specific “norm” of pulse pressure (PP) in the quadratic 

hazard model applied to data on onset of “unhealthy life” in females (solid red lines) and males 

(dashed blue lines) in the Framingham Heart Study (original cohort) 
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Fig. 7: Estimates of the baseline hazard rate ( )(0 tµ ), the quadratic term in the hazard (Q(t)), the 

“mean allostatic state,” and the age-specific “norm” of pulse rate (PR) in the quadratic hazard 

model applied to data on onset of “unhealthy life” in females (solid red lines) and males (dashed 

blue lines) in the Framingham Heart Study (original cohort) 
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Fig. 8: Estimates of the baseline hazard rate ( )(0 tµ ), the quadratic term in the hazard (Q(t)), the 

“mean allostatic state,” and the age-specific “norm” of serum cholesterol (SCH) in the quadratic 

hazard model applied to data on onset of “unhealthy life” in females (solid red lines) and males 

(dashed blue lines) in the Framingham Heart Study (original cohort) 

 

 


