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 A Simple Approach to Assess Group Differences in Estimated Baseline Survivor Functions 

from Cox Proportional Hazards Models 

Abstract 

We develop a heuristic approach to generate the expected events that would occur 

under a Cox proportional hazards model and illustrate how the results can be used 

to test for group differences in the resulting risk-adjusted survivor distributions. 

The estimated baseline survivor functions from a Cox proportional hazards 

models fit separately for two groups are used to construct the expected number of 

events occurring at each event time, the expected number of interval-censored 

observations, and the adjusted risk set corresponding to the expected decrements 

due to events and censoring for each group. Differences in the resulting expected 

survival distributions can be tested using log-rank and generalized Wilcoxon tests. 

This method should also prove useful for making other kinds of comparisons of 

adjusted life tables.
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A Simple Approach to Assess Group Differences in Estimated Baseline Survivor Functions 

from Cox Proportional Hazards Models 

 

Introduction 

  A considerable amount of applied research has focused on disparities and group 

differences in health and socio-demographic outcomes. When outcomes reflect events, or 

transitions from one state to another, group differences in survivorship are often of major interest.  

Group differences in survivor functions are often examined descriptively using life-table 

techniques, and are assessed more formally using various forms of the log-rank (Savage 1956), 

or generalized Wilcoxon (Gehan 1956) statistics, which effectively summarize the survivor 

distributions and lead to a test of the difference in the observed and expected number of events 

conditional on the total number of events occurring at a particular time. While these tests are 

useful in exploratory analysis, they are less suited for testing differences between survival 

functions that have been adjusted for many risk factors, such as fitted survivor functions from 

multivariate models.  

 In hazard rate models, the adjusted, predicted, or model-based, baseline survivor function 

depicts the survivorship experience that would be expected under the condition that all covariates 

equal 0. Thus, in the case of a model consisting of a set of factors that increase the risk of an 

event, we would expect the predicted baseline survivor function to be shifted towards 1. In this 

case, the risk-adjusted baseline survivor function represents a counterfactual survival experience 

of a hypothetical homogenous low-risk cohort.  When such adjustments are made in two or more 

populations, tests of differences between the risk-adjusted survivor functions can be informative 
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about the possible impact that changes in the population composition on key risk factors would 

have on socio-demographic and health disparities across groups.  

 Tests of differences in survivor distributions have not thus far been extended to testing 

group differences in predicted baseline survival rates obtained from separate multivariate hazard-

rate models. This paper fills that gap by extending the log-rank and generalized Wilcoxon tests to 

assess the difference in the estimated baseline survivor functions from Cox (1972) proportional 

hazards models. This approach provides tests of group differences as well as a basis for 

constructing a risk-adjusted life table, which may be useful in its own right for predicting the 

number of events that would be expected to occur at specific times or ages. In essence, we are 

interested in the extent to which group differences in survival would diminish or disappear if 

both group’s risk factors could be eliminated.  This paper is structured as follows: Section 1 

provides background to the statistical techniques underlying tests of group differences in 

survivor functions; Section 2 outlines how this approach can be adapted to test the difference 

between fitted baseline survivor functions from Cox proportional hazard models; Section 3 

provides an empirical example; and, Section 4 provides a discussion and limitations of this 

approach. 

 

1.0  Background 

 Group differences in observed survival rates are commonly assessed using variants of the 

Mantel-Haenszel approach (Mantel and Haenszel 1959; Mantel  1966). While there are modern 

extensions of this general approach (see e.g., Heller and Venkatraman 1996), traditional 

approaches include the log-rank test and generalized Wilcoxon tests (Cox and Oakes 1984), 

which are designed to test the overall equality of survivor functions for J  groups using 
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information about the events and the number at risk at each event time kt . Similar approaches 

have been derived from the perspective of counting processes (see, e.g., Aalen 1978; Harrington 

and Flemming 1982).
1
 These tests are intuitively appealing due to their similarity with methods 

for testing association in contingency tables. The two most frequently-used tests for this purpose 

are the log rank test (Savage 1956) and the Generalized Wilcoxon test (Prentice 1982).  

The Log-rank Generalized Wilcoxon Tests 

 The generalized Wilcoxon and log-rank tests provide an efficient means to test for the 

equality of survivor distributions.  We borrow from the discussions by Kalbfleisch and Prentice 

(1980) and Cox and Oakes (1984), who provide derivations of the log-rank test. Suppose that we 

wish to test the equality of survivor functions 1( ), ( )JS t S t…  ( 1, ,j J= … ) obtained from samples 

from each of J  populations. Let 1 2 k Kt t t t< <…< <…  denote the observed event times obtained 

by pooling over the J  samples.  The times constitute a set of order statistics and as such, the 

rankings—not the actual values of t—are relevant for the nonparametric analysis adopted here. 

 Tests of difference in survivor functions consider the observed number of events 

experienced in group j  at time kt , denoted by jkd , and the observed number at risk in group j  

just prior to time kt , denoted by jkR .  The data at time kt  can be structured in the form of a 2 J×  

contingency table containing jkd  events and jk jkR d−  survivors in the jth row of the table.  It can 

be shown that the distribution of 1 , ,k Jkd d… , conditional on the event and censoring experience 

of the samples up to time kt , is the product of binomial distributions.  

                                                 
1
 The log-rank test is often referred to as the generalized Savage test).  Generalized Wilcoxon tests are often referred 

to under the names Breslow, Tarrone-Ware, and Prentice All of these tests differ only with regard to the weights to 

compute the score statistic and its variance.  
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where kh  is the event probability at  kt  common to each of the J  samples under the null 

hypothesis of equality of survivor functions.  It can be shown that the conditional distribution of 
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hypergeometric distribution 

     
1

J
jk

j j

k

k

k

R

d

R

d

=

 
  
 
 
 
 

∏
      (2) 

From Eq.(2), the expected number of events at time kt  for each group is given by ,k
jk

k

R
d

R
 where 

1

J

k jk

j

dd
=

=∑  and 
1

J

k jk

j

R R
=

=∑ . 

 The statistical test utilizes a score statistic as a measure of the difference between the 

observed and expected number of events experienced in group j  at time kt . The log-rank and 

generalized Wilcoxon tests differ in the weights used to compute the score statistic and its 

variance. The most general form of the test is due to Harrington and Flemming (1982), in which 

the weights are defined as 

 ˆ ) for 0( 1,k kw S t ρ ρ+= ≤ ≤  (3) 
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 The value of ρ   ranges from 0 to 1 and determines the sensitivity region of the test. A 

choice of 0ρ =  leads to a log-rank test, which is more sensitive to differences in survivor 

functions at later durations. A value of 1ρ =  results in a “generalized Wilcoxon” test (Prentice 

1982), which is more sensitive to differences in survivor functions at earlier durations. For each 

of the test statistics we construct a 1J ×  vector of score statistics, the jth element of which is 
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The variance in the score statistic is the J J×  matrix, with element jl given by 
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where ( )I j l=  is the indicator function equal to 1 if j l=  and 0 otherwise.  The log-rank and 

generalized Wilcoxon test statistics are calculated as 

     1S −′= u V u       (7) 

which follows a 2χ  distribution with 1J −  degrees of freedom. The rank of V  is 1J − , thus we 

can omit the last dimension. For example, in a two-group comparison we can simply use 
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 We are aware of no analogous approaches to evaluate differences in predicted survival 

functions from multivariate statistical models such as the Cox proportional hazards model (Cox 

1972), which is perhaps the most widely-used model for survival analysis in demographic and 

health research.  Given the widespread use of this model in contexts where hazard rates are 

adjusted for known risk factors, extending this approach to test group differences in predicted 

baseline survival rates obtained from multivariate models seems warranted.   
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 Apart from the utility of testing group differences in predicted survivor functions, the 

approach provides a method to generate predicted events at kt  under a specific model, thereby 

showing the hypothetical effect of adjusting for known risks and protective factors on the 

number of events occurring at time kt .  We first provide some background to the conventional 

approach to assessing group differences using Cox proportional hazards models and outline some 

the limitation of this approach. 

Assessing Group Differences with Proportional Hazards Models 

 A somewhat more restrictive test of group difference in survivorship can be obtained 

from a proportional hazards model. Although these methods apply to a multi-group setting, we 

focus here on a two-group comparison.  For example, a proportional hazards model of event 

occurrence for individual i  at time kt  can be expressed in terms of a binary group membership 

variable z and a covariate x  as 

   0 1 2( ) ( ) exp( ).ik k i ih t h t z xβ β= +      (9) 

A test of the null hypothesis that the log hazard ratio 1β  equals 0 for group variable z  is 

equivalent to a test of a group difference in the log baseline hazard. It has been shown that the 

log-rank test outlined earlier can be carried out using a score statistic derived from evaluating the 

1
st
-order conditions for the maximum partial likelihood function for the Cox regression model 

(Peto and Peto 1972; Peto and Pike 1973). 

 The model above is assumed to hold for each group. In particular, the baseline hazard for 

the group defined by 1z =  is identical to the baseline hazard for the 0z =  group shifted 

proportionally by 1exp( )β  at any event time. To relax the proportionality assumption, researchers 

often allow group-specific baseline hazards by fitting a stratified Cox model based on the 

grouping variable. This approach assumes that the effects of x  are the same for each stratum. 
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One drawback of this approach is that z  is absorbed into the baseline hazard; its effect is not 

estimable as a consequence. Estimating a proportional hazard model separately for each group 

allows maximum flexibility by permitting group variation in both the baseline hazards and the 

covariate effects. Comparisons of group differences in covariate effects is straightforward, 

however differences in the baseline hazard are more difficult to assess as these are unspecified in 

the Cox regression model.  

 It would be of considerable interest to researchers to assess group differences in 

predictions from Cox models. A fruitful approach to do this is motivated from an evaluation of 

the estimated baseline survival function. While it is not generally possible to obtain estimates of 

the baseline hazard at time kt  directly from a Cox model, it is relatively straightforward to obtain 

estimates of the survivor function. Given an estimate of the survivor function and the number at 

risk at kt , it is possible to work backwards to obtain an adjusted life table consisting of the 

expected number at risk and the expected number of events that would have occurred at kt  under 

a specific model. Next we show how the results from a Cox proportional hazard model may be 

used to generate predicted survivor functions that have been adjusted for risk factors and how 

this information may be used to generate the expected event distribution. 

 

2.0 Applying Generalized Wilcoxon Tests to Estimated Baseline Survival Distributions 

 In order to apply the generalized Wilcoxon tests to predicted survival, we must first 

estimate the number of events that would have occurred at kt , given the estimated survival 

functions and the number of individuals at risk at kt . That is we need the estimates of the 

quantities given in Eqs. (4-7) provided earlier.  We will assume that the number at risk at time kt , 
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kR , and the surviving faction, kS , are known or can be estimated, where the number of subjects 

at risk at kt  includes those censored in the interval 1[ ),k ktt + . A model-based approach to 

predicting the number of events that would occur at kt  considers the baseline survival function 

from a proportional hazards model.  Specifically, the predicted survivor function at time kt  for 

individual i  is  

    
ˆexp( )

0) )( (ˆ ,ix

ik ktt SS
β=       (10) 

where 0 ( )kS t  is the baseline survivor function at kt  and β̂  are estimates of the effects of x .
2
    

Applying a –log transformation, the predicted survivor function for individual i  at time kt  can 

be written in terms of the baseline cumulative hazard function,  0 )( kH t , as 

    0
ˆ) (ˆl exp(og ( ) ).ik k iS Ht t xβ=−     (11) 

Aalen’s estimator of 0 )( kH t  can be used to obtain an estimate of 0 ( )kS t (Aalen 1976).  

Specifically,  
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where kd  denotes the number of events occurring at kt , and ( )ktR denotes the risk set just prior 

to kt .  It follows that the estimated baseline survivor function at kt can be estimated as 

    0 0
ˆ ˆ( ) exp[ ( )].k kS t H t= −      (13) 

 The baseline survivor function is the model-adjusted counterpart of the empirical 

survivor function ( )kS t  and depends on the configuration of values of predictor variables under a 

specific model.  If the predictors act uniformly to raise the risk of an event, then the predicted 

                                                 
2
The baseline survivor function from a “null” Cox model results in the Kaplan-Meier estimate.  
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baseline survivor function will be shifted towards 1 when compared to the empirical survivor 

function. On the other hand, if predictors uniformly lower the risk of an event, then the predicted 

baseline survivor function will be shifted towards 0.  The predicted baseline survivor function 

thus represents a counterfactual survivor function that has been adjusted upwards for risk factors 

and downward for protective factors. In this sense, it is most useful when the collection of 

predictors in a multivariate model represents an unambiguous set of either protective or risk 

factors, rather than a mixture of both types of factors. 

 We treat the estimated baseline survivor function, 0
ˆ ( )S t , as analogous to the usual 

Kaplan-Meier estimate of ( )S t  by assuming that the estimated baseline survival function has 

been generated according to the product-limit estimator as: 

  0 : :
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k k t t k t t k
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where kd  denotes the number of events which occur at kt  among those at risk ( kR ) for a set of 

K  unique event times (Kaplan and Meier 1958). It follows from this relationship that the 

conditional probability of an event at kt  can be obtained as 
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3
The survivor function at 1t  corresponds to the first observed event time and 

0
( ) 1.0S t =  
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 An estimate of kq  is obtained as /ˆ
k k kdq R=  according to the product limit estimator. It 

follows that under the current model, the predicted number of events occurring at kt ,  given the 

number of individuals at risk at kt  can be estimated as 

    ˆ .ˆk k kRd q=        (16) 

Thus, we estimate kq  using the estimated baseline survivor function and this in turn is used to 

estimate the number of events that are expected to occur at kt  under a specific proportional 

hazards model. 

Further Considerations 

 Because the estimated number of events differs from the observed number of events, this 

will necessarily affect the composition of the risk set with the passage of time differently than 

what would occur under the observed pattern of events. Therefore, we adjust the subsequent 

number at risk according to the expected number of events occurring at kt . This requires two 

decision rules. First, we shall assume that the expected number at risk initially (i.e., at 1t ) is equal 

to the observed number at risk. To adjust the size of the risk set at points in time later than 1t  we 

must account for the number of censored observations that would have occurred, given the 

expected number of events (i.e., the counterfactual number of censored observations in the 

interval  from kt  to 1kt +  ). The expected number of censored observations in the interval 1)[ ,k ktt +  

is determined by adjusting the observed number of censored observations.  Specifically, let kc  

denote the observed number of individuals who are censored in the interval 1)[ ,k ktt + , and let kd  

and ˆkd  denote the observed and expected number of events at kt ,  respectively. Then, the 
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predicted or expected number of observations censored at kt  is incremented or decremented as 

follows: 

     ˆˆ ( ).k k k kc dc d= + −      (17) 

That is, if the model predicts more (fewer) events, this leads to an increase (decrease) the 

expected number of observations that would be censored in the interval 1)[ ,k ktt + . 

 Secondly, this adjustment necessarily affects the composition of the risk set at kt . The 

process of predicting the number of events and the number censored changes the size of the risk 

set because the predictions will most assuredly differ from what is observed if the predictors 

have significant effects on the hazard. The expected number at risk at time 1kt −  together with the 

expected number of events/censorings allows the number at risk to be decremented recursively 

according to the following rule: 

     1 1 1
ˆˆ ˆ ˆ ,k k k kR R d c− − −= − −      (18) 

where 1R  is equal to the initial observed number at risk. In this way the number at risk is 

adjusted according to the model-based predictions.  Note that this adjustment is similar to the 

way in which the number at risk in subsequent intervals is determined using the standard life 

table approaches, and the Kaplan-Meier estimator in particular. It can be shown that the 

predicted survivor function from a Cox model without covariates will exactly reproduce a 

cohort’s survival experience. For example, the number of events at 1t  is 1 0 1 1( )d S t R=  and the 

number of events at 2t  is 2 0 1 0 2[ ( ) ( )]R S t S t− .  We have followed the same logic, with some 

modifications for censoring and risk-set size adjustment, to obtain the predicted events. Having 

obtained the predictions, we can compare the observed and predicted distributions of events, 

survivor distributions, and numbers at risk. 
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Log Rank and Generalized Wilcoxon Tests on Predicted Baseline Survival Functions 

 We can apply the generalized Wilcoxon test using the predicted values of kd and kR  for 

each group. We then substitute the estimated quantities into the formulas for the generalized 

Wilcoxon tests outlined earlier yielding a model-based test. The revised score statistic based on 

the predictions is obtained by substituting the estimated quantities into Eqs. (4-7). In this way, 

we can use model-based estimates of the baseline cumulative hazard to estimate events, 

censorings, and the number at  risk, which can then be used in statistical tests of group 

differences in risk-adjusted survivor functions. 

 

3.0  Example 

  As an application of this approach, we consider the risk of teen pregnancy in a sample of 

non-Hispanic white women. This analysis uses the 1993 wave of the National Longitudinal 

Survey of Youth (NLSY). The NLSY is a nationally representative sample of approximately 

13,000 youth aged 14-21 in 1979.  Retrospective information about timing (age) of first 

intercourse, pregnancy, birth, and marriage are available in later years of the survey.
4
  We focus 

on age of first pregnancy occurring while unmarried prior to age 20 (i.e., first premarital teen 

pregnancy).  The event histories represented in this analysis reflect the early family-formation 

experiences of 2,277 non-Hispanic white women who were followed from 1979 until 1986, at 

which time the youngest member of the 1979 cohort would be about 20 years old.    

                                                 
3In the cases where a pregnancy was reported but information about age of first intercourse was missing, 

we imputed age at first intercourse. Numerous checks were carried out to match pregnancies with births 

or other pregnancy outcomes. In cases where a respondent reported a birth but was missing data on 

pregnancy, we imputed the pregnancy date as 9 months prior to the birth date.  For a few cases, a teen 

pregnancy occurring close to age 20 could result in a live birth occurring about 9 months later. This 

information was used as a further check on the imputation of the age at first pregnancy.   
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There is a longstanding interest in adolescent pregnancy and its consequences. A growing 

body of literature explores the role of religion, as summarized in the 2001 report by the National 

Campaign to Prevent Teen Pregnancy (Whitehead et al. 2001).  Religious participation has been 

shown to have general influence on sexual restraint. Moreover, specific religious subcultures 

may have particularly strong proscriptive sexual norms—e.g., Conservative Protestantism and 

Catholicism.  Whitehead et al. (2001) find support for the idea that religiosity (variously defined) 

is associated with delayed sexual activity among some groups of teens, while at the same time 

suggesting that some religious teens may be less likely to use contraception when they do begin 

sexual activity.  

 Here we are interested in comparing the fitted baseline survivor functions of teen 

pregnancy for two groups of respondents: those respondents who were raised as Conservative 

Protestants, and those from other religious backgrounds, including those with no particular 

religious upbringing or religious preference.  The multivariate models used to obtain the 

predicted baseline survivor functions include a set of individual-level and social background 

variables including: low maternal education level (i.e., mother’s education < 12 years, ˆ 0.27p = ),  

number changes in family structure (family transitions) (range [0-10],  0.31x =  ),  number of  

older siblings (0-16, 1.91x = ), and low frequency of church attendance (i.e., less frequent than 

once per month, ˆ 0.54p = .)
5
 

 Table 1 shows the hazard ratios and 95% confidence intervals associated with these 

estimates. All covariates are predictive a higher risk of teen pregnancy in this sample and the 

effects are similar across groups, with the exception of the effect of older siblings on the risk for 

conservative protestants. Figure 1 shows the observed survivor functions (a) along with the 

                                                 
5
 The values in parenthesis are the estimated means ( x ) and proportions ( p̂ ). 
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predicted survivor functions (b) under the multivariate model for two groups of young women: 

those who were raised in Conservative Protestant families (Group 1) and those with other 

religious upbringing, including those with no particular religious upbringing (Group 2). Both 

figures show higher teen premarital pregnancy rates for women who were raised in Conservative 

Protestant families. As expected, the predicted baseline survivor functions are shifted towards 1 

after adjusting for risk factors. 

 We apply the method outlined above using each group’s estimated baseline survivor 

functions. Table 2 provides a summary of the observed and expected number of events and 

interval censoring along with the size of the risk set obtained by aggregating results over single-

year age intervals.
6
  As expected, the predicted number of events is lower and interval-censoring 

is higher after adjustment for risk factors. However, Conservative Protestants would be expected 

to experience a 46% percent reduction in teen pregnancy  if risk factors were eliminated 

compared to an expected 30% reduction for those from other backgrounds. Thus, this approach 

reveals differential impacts of risk or protective factors on expected outcomes. Moreover, age-

specific event counts are adjusted downward to a greater extent in earlier age intervals (ages 14-

17) in the Conservative Protestant sample when compared to the second sample. Event counts in 

the age 14-17 interval are reduced by 65% for Conservative Protestants under the model, 

whereas those from other backgrounds achieve only a 26% reduction in events under this model).  

We can also see this pattern in the predicted survivor functions in Figure 1.  In contrast to the 

marked reductions in incidence predicted for Conservative Protestants at early ages, we find 

                                                 
6
  The quantities ad  and ˆad  are different from those presented earlier as they represent the sum of the events (or 

expected events) over broad age intervals. 
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roughly similar predicted event reductions at later ages (34.3% among those from Conservative 

protestant backgrounds and 34.1% among those from other backgrounds). 

 We construct test statistics based on the individual-level predictions based on the 

approach outlined above. Table 3 provides a comparison of the observed and model-based 

Wilcoxon and log-rank tests. Both tests produce similar results.  We can see that the survivor 

functions for Conservative Protestants and other groups differ at less than the 0.0001 level of 

significance. After adjustments for risk factors the differences are attenuated, but remain 

statistically significant at less than the 0.01 level.  

 

4.0 Discussion 

 We provide a heuristic approach for predicting event histories under a specific 

proportional hazards model. The predictions consist of the event/censoring patterns and the 

evolving risk-set composition that would be expected to occur if risk factors could be eliminated.  

The approach works backwards from a predicted baseline survivor function to generate the 

expected events, censoring, and the number at risk that would prevail under a specific Cox 

regression model. This technique can be used to construct risk-adjusted life tables obtained by 

aggregating the predicted number of events over broader time or age intervals.  The technique is 

also useful for evaluating group differences in survivorship, which is the main motivation in this 

paper. In essence, we are interested in the extent to which group differences in survival would 

diminish or disappear if both group’s risk factors could be eliminated.   

 Generalized Wilcoxon tests provide a standard tool for assessing differences in empirical 

survivor functions. We show that these tests can be carried out using the model-based predictions. 

This technique inherits some limitations of the tests on which it is based. In particular, it is likely 
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to perform better when the ratio of hazard functions in the populations to be compared is 

relatively constant. It is also the case that simplifying assumptions are made regarding the 

independence of contingency tables formed at successive event times. The contingency tables at 

successive event times are clearly not statistically independent, but it would be difficult to 

formalize the distribution theory to take this into account. The approach is also limited insofar as 

the age structure of risk is fixed when making event predictions (i.e., the order statistics are not 

adjusted), although it is possible to predict 0 events for specific ages or times. Further work is 

needed to determine how this might be remedied by developing alternative procedures.  We also 

do not take into account the sampling variability of the Cox regression estimates, although this 

might be overcome by carrying out replications using re-sampling procedures. Overall, this 

approach is more flexible than the standard approach involving stratification on auxiliary 

variables because, unlike stratification, it can accommodate continuous predictors. More 

complex model specifications involving time-varying covariates and non-proportional effects 

can also be considered. 
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Table 1: Hazard Ratios and 95% Confidence Intervals from Cox Proportional Hazard 

Models of Premarital Pregnancy 

Variable Hazard Ratio lower upper Hazard Ratio lower upper

Low Church Attendance 1.79 1.26 2.54 1.58 1.23 2.01

Number of Family Transitions 1.53 1.34 1.76 1.52 1.36 1.71

Low Maternal Education 1.64 1.19 2.27 1.90 1.51 2.39

Number of Older Siblings 1.06 0.99 1.15 1.02 1.02 1.14

Conservative Protestant Other

95% CI 95% CI
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Table 2: Number at Risk (R),  Number of Events (d), and Number Censored (c) based on 

Empirical and Predicted Survivor Functions for Aggregated Single-year Age Intervals. † 

 

       

Conservative Protestant 
             

 Empirical   Model Based   

 aR  ad  ac  aS  ˆ
aR  ˆ

ad  ˆ
ac  ˆ

aS  

Age Interval           

[13, 14) 606 1 4 0.998 606 0 6 0.999 

[14, 15) 601 9 2 0.983 600 2 16 0.992 

[15, 16) 590 17 18 0.955 582 4 44 0.978 

[16, 17) 555 38 27 0.888 534 17 69 0.944 

[17, 18) 490 44 66 0.803 448 28 98 0.894 

[18, 19) 380 35 49 0.724 322 22 75 0.843 

[19, 20) 296 20 16 0.673 225 15 26 0.807 

[20+  0 260   0 184  

Number of Events 164    88   

Other 
 
        

 Empirical   Model Based   

 aR  ad  ac  aS  ˆ
aR  ˆ

ad  ˆ
ac  ˆ

aS  

Age Interval        

[12, 13) 1671 1 0 0.999 1671 1 0 1.000 

[13, 14) 1670 2 0 0.998 1670 2 0 0.999 

[14, 15) 1668 17 1 0.988 1668 15 3 0.994 

[15, 16) 1650 40 6 0.964 1648 31 15 0.981 

[16, 17) 1604 61 17 0.927 1593 41 37 0.960 

[17, 18) 1526 70 65 0.884 1495 47 88 0.935 

[18, 19) 1391 84 88 0.829 1337 53 119 0.901 

[19, 20) 1219 54 37 0.791 1134 39 52 0.876 

[20+  0 1128   0 1043  

Number of Events 329    229   

        

        

† Note: aR and ˆaR    indicate the observed and expected risk set at the start of age intervala , 

respectively. aS  and ˆaS  represent the empirical and predicted survivor functions at the end of 

age interval a . a k

k a

d d
∈

=∑ , ˆ ˆ
a k

k a

d d
∈

=∑ , a k

k a

c c
∈

=∑ , and ˆ ˆ
a k

k a

c c
∈

=∑ . 
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Table 3:  Empirical and Model-based Tests of a Group Difference in Survivor Distributions 

Using Log-rank and Wilcoxon Tests 

N Obs. Exp. Contrib. Obs. Exp. Contrib.

Log Rank (ρ =0)

Cons. Prot 606 164 112 23.96 88 66.15 7.22

Other 1671 329 381 7.06 229 250.85 1.90

31.02 9.12

Wilcoxon (ρ =1)

Cons. Prot 606 147 100 21.10 83.26 63.14 6.41

Other 1671 291 337 6.30 217.9 238.01 1.70

27.40 8.11

Empirical Model Based

2χ =

2χ

2χ =

2χ = 2χ =

2χ
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                 (a)              (b) 

Figure 1: Observed (a) and predicted (b) survivor functions (a) for Conservative Protestant 

families (Group 1) and those from other religious backgrounds, including those with no 

particular religion (Group 2). 

  


